Question

In: Math

Consider a six-sided fair dice. Complete the following tables for this die: Number on the dice...

Consider a six-sided fair dice. Complete the following tables for this die:

Number on the dice

Number of times it appears on the dice

Relative frequency of seeing that number

1

2

3

4

5

6

Total

This is the entire question, does not say how many times the dice is thrown

Solutions

Expert Solution

This is a six sided fair die having numbers 1 through 6, each value appearing only once, since this is a fair die.

Hence the number of times 1 appears on the die face is 1, similarly 2,3,4,5,6 appear once each on one of the faces.

There are a total of 6 numbers printed on the die/there are 6 faces.

The relative frequency of any number on the die is (number of times it appears on the die)/(Total number faces on the die)

That means, the relative frequency of 1 is 1/6. Similarly the relative frequencies of the rest of the numbers are 1/6 each.

The table now can be filled

Number on the dice Number of times it appears on the dice Relative frequency of seeing that number
1 1 0.1667
2 1 0.1667
3 1 0.1667
4 1 0.1667
5 1 0.1667
6 1 0.1667
Total 6 1

In other words, if X is the number that the die lands on face up, when rolled, the probability distribution of X is

Number rolled (x) P(x)
1 0.1667
2 0.1667
3 0.1667
4 0.1667
5 0.1667
6 0.1667

Or the probability that 1 is rolled on any given roll of this die is 1/6.

similarly the probability that 2 is rolled is 1/6 and so on.


Related Solutions

Consider the experiment of rolling a six-sided fair die. Let X denote the number of rolls...
Consider the experiment of rolling a six-sided fair die. Let X denote the number of rolls it takes to obtain the first 5, Y denote the number of rolls until the first 2, and Z denote the number of rolls until the first 4. Numerical answers are needed only for parts (a) and (b). Expressions are sufficient for parts (c), (d), and (e). a) E[X|Y = 1 or Z = 1] b) E[X|Y = 1 and Z = 2] c)...
Suppose you are rolling a fair four-sided die and a fair six-sided die and you are...
Suppose you are rolling a fair four-sided die and a fair six-sided die and you are counting the number of ones that come up. a) Distinguish between the outcomes and events. b) What is the probability that both die roll ones? c) What is the probability that exactly one die rolls a one? d) What is the probability that neither die rolls a one? e) What is the expected number of ones? f) If you did this 1000 times, approximately...
Consider rolling both a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6...
Consider rolling both a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6 together. After rolling both dice, let X denote the number appearing on the foursided die and Y the number appearing on the six-sided die. Define W = X +Y . Assume X and Y are independent. (a) Find the moment generating function for W. (b) Use the moment generating function technique to find the expectation. (c) Use the moment generating function technique to find...
Consider a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6, where X...
Consider a fair four-sided die numbered 1-4 and a fair six-sided die numbered 1-6, where X is the number appearing on the four-sided die and Y is the number appearing on the six-sided die. Define W=X+Y when they are rolled together. Assuming X and Y are independent, (a) find the moment generating function for W, (b) the expectation E(W), (c) and the variance Var(W). Use the moment generating function technique to find the expectation and variance.
You have two fair six-sided dice. The sides of each die are numbered from 1 to...
You have two fair six-sided dice. The sides of each die are numbered from 1 to 6. Suppose you roll each die once. Let ? be ???(??? 1,??? 2), and let ? be ???(??? 1,??? 2). a) Find the joint PMF of ? and ?. b) Find ???(?). c) Find ?[?+?]
A fair six-sided green die is rolled resulting in a number between 1 and 6. Then...
A fair six-sided green die is rolled resulting in a number between 1 and 6. Then that number of red dice are rolled. Find the expected value and variance of the sum of the red dice.
Let ? be the number that shows up when you roll a fair, six-sided die, and,...
Let ? be the number that shows up when you roll a fair, six-sided die, and, let ? = ?^2 − 5? + 6. a. Find both formats for the distribution of ?. (Hint: tep forms of probability distributions are CDF and pmf/pdf.) b. Find F(2.35)
Suppose a red six-sided die, a blue six-sided die, and a yellow six-sided die are rolled....
Suppose a red six-sided die, a blue six-sided die, and a yellow six-sided die are rolled. Let - X1 be the random variable which is 1 if the numbers rolled on the blue die and the yellow die are the same and 0 otherwise; - X2 be the random variable which is 1 if the numbers rolled on the red die and the yellow die are the same and 0 otherwise; - X3 be the random variable which is 1...
The experiment of rolling a fair six-sided die twice and looking at the values of the...
The experiment of rolling a fair six-sided die twice and looking at the values of the faces that are facing up, has the following sample space. For example, the result (1,2) implies that the face that is up from the first die shows the value 1 and the value of the face that is up from the second die is 2. sample space of tossing 2 die A pair of dice is thrown. Let X = the number of multiples...
Find the probability that in 200 tosses of a fair six sided die, a five will...
Find the probability that in 200 tosses of a fair six sided die, a five will be obtained at least 40 times
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT