Question

In: Advanced Math

Obi-wanandAnakinarechasingZamWessel.Obi-wanandAnakinareatthepoint(325,675,561) while Zam is at the point (765, 675, 599). (a) Find parametric equations for the...

  1. Obi-wanandAnakinarechasingZamWessel.Obi-wanandAnakinareatthepoint(325,675,561) while Zam is at the point (765, 675, 599).

    1. (a) Find parametric equations for the line of sight between the Jedi and the bounty hunter.

    2. (b) If we divide the line of sight into five equal segments, the heights of the buildings at the four intermediate points from Obi-wan and Anakin to Zam Wessel are 549, 566, 586, and 589. Ignoring other buildings, can Zam see Obi-wan and Anakin?

Solutions

Expert Solution


Related Solutions

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
3. (5 points) (a): Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.$$ x=e^{-t} \cos t, \quad y=e^{-t} \sin t, \quad z=e^{-t} ; \quad(1,0,1) $$(b): Find the unit tangent vector \(\mathbf{T}\), the principal unit normal \(\mathbf{N}\), and the curvature \(\kappa\) for the space curve,$$ \mathbf{r}(t)=<3 3="" 4="" sin="" cos="" t="">$$
Find parametric equations for the tangent line to the curve with the given parametric equations at...
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
Find parametric equations for the line through the point (0, 2, 3) that is perpendicular to...
Find parametric equations for the line through the point (0, 2, 3) that is perpendicular to the line x = 2 + t, y = 2 − t, z = 2t and intersects this line. (Use the parameter t.) (x(t), y(t), z(t)) =
1. Given parametric equations below, find the values of t where the the parametric curve has...
1. Given parametric equations below, find the values of t where the the parametric curve has a horizontal and vertical tangents. a) x=t^2 - t, y= t^2 + t b) x= e^(t/10)cos(t), y= e^(t/10)sin(t) 2. Find the arc length of the graph of the parametric equations on the given intervals. a) x= 4t+2, y = 1-3t , −1 ≤ t ≤ 1 b) x= e^(t/10)cos(t), y= e^(t/10)sin(t), 0 ≤ t ≤ 2π
Find a set of parametric equations for the tangent line to the curve of intersection of...
Find a set of parametric equations for the tangent line to the curve of intersection of the surfaces at the given point. (Enter your answers as a comma-separated list of equations.) z = x2 + y2,    z = 16 − y,    (4, −1, 17)
Find the parametric equations of the line of intersection of the planes x − z =...
Find the parametric equations of the line of intersection of the planes x − z = 1 and y + 2z = 3. (b) Find an equation of the plane that contains the line of intersection above and it is perpendicular to the plane x + y − 2z = 1.
Find the equation of the tangent plane and the parametric equations for the normal line to...
Find the equation of the tangent plane and the parametric equations for the normal line to the surface x2 + y2 - z = 0 at the point P(4,-1, 6). Show all steps
Find a set of parametric equations for the tangent line to the curve of intersection of...
Find a set of parametric equations for the tangent line to the curve of intersection of the surfaces at the given point. (Enter your answers as a comma-separated list of equations.) z = sqrt(x2 + y2) , 9x − 3y + 5z = 40, (3, 4, 5)
1. a.) determine vector and parametric equations for the line through the point A(2, 5) with...
1. a.) determine vector and parametric equations for the line through the point A(2, 5) with direction vector = (1, −3).    b.)Determine a vector equation for the line through the points (-1, 4) and (2, -1). c.) Determine parametric equations for the line through (-2, 3) and parallel to the line with vector equation = (−2, 1) + t(6, 4). d .) A line passes through the point (-4, 1) and is perpendicular to the line with parametric equations...
1.) Build the parametric equations of a circle centered at the point (2,-3) with a radius...
1.) Build the parametric equations of a circle centered at the point (2,-3) with a radius of 5 that goes counterclockwise and t=0 gives the location (7,-3) 2.) Build the parametric equations for an ellipse centered at the point (2, -3) where the major axis is parallel to the x-axis and vertices at (7, -3) and (-3, -3), endpoints of the minor axis are (2, 0) and (2, -6). The rotation is counterclockwise 3.) Build the parametric equations for a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT