In: Statistics and Probability
The accompanying data file contains 20 observations for
t and yt.
The data are plotted below.
t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
yt | 10.8 | 14.1 | 10.3 | 10.9 | 11.3 | 13.5 | 10.7 | 9.2 | 8.8 | 12 |
t | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
yt | 9.8 | 11 | 15.1 | 12.5 | 12.9 | 12.3 | 9 | 14.9 | 10.1 | 11.9 |
b-1. Use the exponential smoothing method to make
forecasts with α = 0.2. (Round intermediate
calculations to at least 4 decimal places and final answers to 2
decimal places.)
t | yt | yˆty^t |
1 | 10.8 | ? |
2 | 14.1 | ? |
3 | 10.3 | ? |
19 | 10.1 | ? |
20 | 11.9 | ? |
21 | ||
b-2. Compute the resulting MSE and
MAD. (Round intermediate calculations to at least
4 decimal places and final answers to 2 decimal
places.)
c-1. Use the exponential smoothing method to make
forecasts with α = 0.4. (Round intermediate
calculations to at least 4 decimal places and final answers to 2
decimal places.)
t | yt | yˆty^t |
1 | 10.8 | ? |
2 | 14.1 | ? |
3 | 10.3 | ? |
19 | 10.1 | ? |
20 | 11.9 | ? |
21 |
c-2. Compute the resulting MSE and
MAD. (Round intermediate calculations to at least
4 decimal places and final answers to 2 decimal
places.)
d. Use the appropriate value of α to make
a forecast for period 21. (Round intermediate calculations
to at least 4 decimal places and final answer to 2 decimal
places.)
yˆty^t
(Y-Hat sub t)
Here as we use exponential method to make forcasts with α = 0.2
y^t+1 = α yt + (1 - α ) y^t
t | yt | Y^t |
1 | 10.8 | 10.8 |
2 | 14.1 | 10.8 |
3 | 10.3 | 11.46 |
4 | 10.9 | 11.2280 |
5 | 11.3 | 11.1624 |
6 | 13.5 | 11.1899 |
7 | 10.7 | 11.6519 |
8 | 9.2 | 11.4615 |
9 | 8.8 | 11.0092 |
10 | 12.0 | 10.5674 |
11 | 9.8 | 10.8539 |
12 | 11.0 | 10.6431 |
13 | 15.1 | 10.7145 |
14 | 12.5 | 11.5916 |
15 | 12.9 | 11.7733 |
16 | 12.3 | 11.9986 |
17 | 9.0 | 12.0589 |
18 | 14.9 | 11.4471 |
19 | 10.1 | 12.1377 |
20 | 11.9 | 11.7302 |
for MSE and MAD
t | yt | Y^t | Abs. Error | Squared error |
1 | 10.8 | 10.80 | 0.0000 | 0.0000 |
2 | 14.1 | 10.80 | 3.3000 | 10.8900 |
3 | 10.3 | 11.46 | 1.1600 | 1.3456 |
4 | 10.9 | 11.23 | 0.3280 | 0.1076 |
5 | 11.3 | 11.16 | 0.1376 | 0.0189 |
6 | 13.5 | 11.19 | 2.3101 | 5.3365 |
7 | 10.7 | 11.65 | 0.9519 | 0.9062 |
8 | 9.2 | 11.46 | 2.2615 | 5.1146 |
9 | 8.8 | 11.01 | 2.2092 | 4.8807 |
10 | 12.0 | 10.57 | 1.4326 | 2.0524 |
11 | 9.8 | 10.85 | 1.0539 | 1.1107 |
12 | 11.0 | 10.64 | 0.3569 | 0.1274 |
13 | 15.1 | 10.71 | 4.3855 | 19.2326 |
14 | 12.5 | 11.59 | 0.9084 | 0.8252 |
15 | 12.9 | 11.77 | 1.1267 | 1.2695 |
16 | 12.3 | 12.00 | 0.3014 | 0.0908 |
17 | 9.0 | 12.06 | 3.0589 | 9.3569 |
18 | 14.9 | 11.45 | 3.4529 | 11.9224 |
19 | 10.1 | 12.14 | 2.0377 | 4.1522 |
20 | 11.9 | 11.73 | 0.1698 | 0.0288 |
Sum | 30.9431 | 78.7689 |
MSE = 78.7689/19 = 4.15
MAD = 30.9431/19 = 1.63
(c-1) Here forcasts with α = 0.4
t | yt | Y^t | Abs. Error | Squared error |
1 | 10.8 | 10.80 | 0.0000 | 0.0000 |
2 | 14.1 | 10.80 | 3.3000 | 10.8900 |
3 | 10.3 | 12.12 | 1.8200 | 3.3124 |
4 | 10.9 | 11.39 | 0.4920 | 0.2421 |
5 | 11.3 | 11.20 | 0.1048 | 0.0110 |
6 | 13.5 | 11.24 | 2.2629 | 5.1206 |
7 | 10.7 | 12.14 | 1.4423 | 2.0801 |
8 | 9.2 | 11.57 | 2.3654 | 5.5949 |
9 | 8.8 | 10.62 | 1.8192 | 3.3096 |
10 | 12.0 | 9.89 | 2.1085 | 4.4456 |
11 | 9.8 | 10.73 | 0.9349 | 0.8741 |
12 | 11.0 | 10.36 | 0.6390 | 0.4084 |
13 | 15.1 | 10.62 | 4.4834 | 20.1011 |
14 | 12.5 | 12.41 | 0.0901 | 0.0081 |
15 | 12.9 | 12.45 | 0.4540 | 0.2061 |
16 | 12.3 | 12.63 | 0.3276 | 0.1073 |
17 | 9.0 | 12.50 | 3.4965 | 12.2258 |
18 | 14.9 | 11.10 | 3.8021 | 14.4557 |
19 | 10.1 | 12.62 | 2.5188 | 6.3441 |
20 | 11.9 | 11.61 | 0.2887 | 0.0834 |
Sum | 32.7502 | 89.8206 |
for MSE and MAD
MAD = 32.7502/19 = 1.7237 (1.72)
MSE = 89.8206/19 = 4.7274 (4.73)
(d) Here appropriate value of alpha is 0.2
so here
y^ (21) = 0.2 * 11.9 + 0.8 * 11.7302 = 11.76