In: Finance
A pension fund manager is considering three mutual funds. The
first is a stock fund, the second is a long-term government and
corporate bond fund, and the third is a T-bill money market fund
that yields a sure rate of 4.1%. The probability distributions of
the risky funds are:
Expected Return | Standard Deviation | |||
Stock fund (S) | 11 | % | 33 | % |
Bond fund (B) | 8 | % | 25 | % |
The correlation between the fund returns is .1560.
Suppose now that your portfolio must yield an expected return of 9%
and be efficient, that is, on the best feasible CAL.
a. What is the standard deviation of your
portfolio? (Do not round intermediate calculations. Round
your answer to 2 decimal places.)
Standard deviation
%
b-1. What is the proportion invested in the T-bill fund? (Do not round intermediate calculations. Round your answer to 2 decimal places.)
Proportion invested in the T-bill fund
%
b-2. What is the proportion invested in each of
the two risky funds? (Do not round intermediate
calculations. Round your answers to 2 decimal places.)
Proportion Invested | |
Stocks | % |
Bonds | % |
Stock Fund=Asset 1,Bond Fund=Asset 2 | |||||||
Expected Return of asset1=R1= | 11% | ||||||
ExpectednReturn of asset2=R2= | 8% | ||||||
Standard deviation of asset 1=S1= | 33% | ||||||
Standard deviation of asset 2=S2= | 25% | ||||||
Correlation of asset 1 and 2=Corr(1,2) | 0.1560 | ||||||
Covariance(1,2)=Corr(1,2)*S1*S2= | 128.7 | ||||||
w1=Investment in asset 1 | |||||||
w2=Investment in asset 2 | |||||||
Portfolio Return | |||||||
w1*R1+w2*R2=w1*11+w2*8 | ……..Equation (1) | ||||||
Portfolio Variance=(w1^2)*(S1^2)+(w2^2)*(S2^2)+2*w1*w2*Cov(1,2) | |||||||
Portfolio Variance=(w1^2)*(33^2)+(w2^2)*(25^2)+2*w1*w2*128.7 | |||||||
Portfolio Variance=(w1^2)*1089+(w2^2)*625+w1*w2*257.4……………Equation (2) | |||||||
Portfolio Standard Deviation=Square root of Variance | |||||||
Standard Deviation for best Feasible CAL | 22.7967432 | ||||||
Weight of Stock | 0.55 | ||||||
Weight of Bond | 0.45 | ||||||
ALL POSSIBLE PORTFOLIOS | Equation(1) | ||||||
w1 | w2 | Rp=w1*11+w2*8 | Vp(Using Equation (2) | Sp=Square root of Vp | SR=(Rp-4.1)/Sp | ||
Weight of | Weight of | Portfolio | Portfolio | Portfolio | SHARP | ||
STOCK | BOND | Return(%) | Variance | Std. Deviation(%) | RATIO | ||
0 | 1 | 8 | 625 | 25 | 0.156 | ||
0.1 | 0.9 | 8.3 | 540.306 | 23.2445 | 0.18068804 | ||
0.2 | 0.8 | 8.6 | 484.744 | 22.0169 | 0.20438842 | ||
0.3 | 0.7 | 8.9 | 458.314 | 21.4083 | 0.22421242 | ||
0.4 | 0.6 | 9.2 | 461.016 | 21.4713 | 0.23752656 | ||
0.5 | 0.5 | 9.5 | 492.85 | 22.2002 | 0.24324078 | ||
0.55 | 0.45 | 9.65 | 519.692 | 22.7967 | 0.24345583 | ||
0.6 | 0.4 | 9.8 | 553.816 | 23.5333 | 0.24221002 | ||
0.7 | 0.3 | 10.1 | 643.914 | 25.3755 | 0.23644891 | ||
0.8 | 0.2 | 10.4 | 763.144 | 27.6251 | 0.22805379 | ||
0.85 | 0.15 | 10.55 | 833.684 | 28.8736 | 0.22338763 | ||
0.9 | 0.1 | 10.7 | 911.506 | 30.1912 | 0.21860705 | ||
1 | 0 | 11 | 1089 | 33 | 0.20909091 | ||
Portfolio Expected Return | 9.65 | % | |||||
Portfolio Standard Deviation | 22.7967432 | % | |||||
SharpRatio for best feasible CAL | 0.24345583 | ||||||
w1=0.55, w2=0.45 | |||||||