In: Physics
a radar for tracking aircraft broadcasts at 12 GHz microwave beam from a 2.0 m-diameter circular radar antenna. From a wave perspective, the antenna is a circular aperture through which the microwaves diffract.
A. what is the diameter of the radar beam at a distance of 30 km?
B. if the antenna emits 100 kW of power what is the average microwave intensity at 30 km?
(A)What is the diameter of the radar beam at a distance of 30 km?
The wavelength of the wave is,
\(\begin{aligned} \lambda &=\frac{c}{f} \\ &=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{12 \times 10^{9} \mathrm{~Hz}} \\ &=0.025 \mathrm{~m} \\ &=25 \mathrm{~mm} \end{aligned}\)
The angular resolution of the system is,
\(\sin \theta=1.22\left(\frac{\lambda}{D}\right)\)
\( \begin{aligned} =1.22\left(\frac{25 \mathrm{~mm}}{2 \mathrm{~m}}\right) \\ \begin{aligned} \theta &=\sin ^{-1} (0.01525) \\ &=15.25 \mathrm{mrad} \end{aligned} \end{aligned} \)
The diameter of the radar beam from the half angle is,
\(d=2(15.25 \mathrm{mrad})\left(30 \mathrm{~km}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\right)\)
\(=915 \mathrm{~m}\)
(B) if the antenna emits 100 kW of power what is the average microwave intensity at 30 km?
The average microwave intensity is,
\(\begin{aligned} I &=\frac{P}{A} \\ &=\frac{P}{\pi r^{2}} \\ &=\frac{4 P}{\pi d^{2}} \\ &=\frac{4\left(100 \times 10^{3} \mathrm{~W}\right)}{\pi(915 \mathrm{~m})^{2}} \\ &=0.152 \mathrm{~W} / \mathrm{m}^{2} \end{aligned}\)