In: Statistics and Probability
The following data represent the dividend yields? (in percent) of a random sample of 28 publicly traded stocks. |
|
Statistical file:
{2.55, 0.47, 1.59, 0.44, 0.07, 2.53, 0.14, 2.04, 0.47, 2.98, 0,
2.88, 0.31, 0.57, 3.43, 2.35, 0.97, 1.31, 2.94, 0, 0.37, 0, 1.93,
0, 1.61, 0.44, 0.23}
Minimum: 0
Quartile Q1: 0.23
Median: 0.57
Quartile Q3: 2.35
Maximum: 3.43
----------------------------
Quartile Q1 :
Explanation
The first quartile (or lower quartile or 25th percentile) is the median of the bottom half of the numbers. So, to find the first quartile, we need to place the numbers in value order and find the bottom half.
0 0 0 0 0.07 0.14 0.23 0.31 0.37 0.44 0.44 0.47 0.47 0.57 0.97 1.31 1.59 1.61 1.93 2.04 2.35 2.53 2.55 2.88 2.94 2.98 3.43
So, the bottom half is
0 0 0 0 0.07 0.14 0.23 0.31 0.37 0.44 0.44 0.47 0.47
The median of these numbers is 0.23.
quartile Q3 :
Explanation
The third quartile (or upper quartile or 75th percentile) is the median of the upper half of the numbers. So, to find the third quartile, we need to place the numbers in value order and find the upper half.
0 0 0 0 0.07 0.14 0.23 0.31 0.37 0.44 0.44 0.47 0.47 0.57 0.97 1.31 1.59 1.61 1.93 2.04 2.35 2.53 2.55 2.88 2.94 2.98 3.43
So, the upper half is
0.97 1.31 1.59 1.61 1.93 2.04 2.35 2.53 2.55 2.88 2.94 2.98 3.43
The median of these numbers is 2.35.