In: Statistics and Probability
Walnut Orchard has two farms that grow wheat and corn. Because of different soil conditions, there are differences in the yields and costs of growing crops on the two farms. The yields and costs are sown in the table below. Each farm has 100 acres available for cultivation; 11,000 bushels of wheat and 7,000 bushels of corn must be grown. Use LP to determine a planting plan that will minimize the cost of meeting these demands.
| Farm 1 | Farm 2 | |
| Corn yield / acre (bushels) | 500 | 650 | 
| Cost / acre of corn ($) | 100 | 120 | 
| Wheat yield / acre (bushels) | 400 | 350 | 
| Cost/ acre of wheat ($) | 90 | 80 | 
Show LP simplex and use lindo model software to solve for Total Cost Acres of farm 1 devoted to Corn, Acres of farm 1 devoted to Wheat, Acres of farm 2 devoted to Corn and Acres of farm 2 devoted to Wheat
Decision variables:
C1 = # of acres of Farm 1 planted in corn
W1 = # of acres of Farm 1 planted in wheat
C2 = # of acres of Farm 2 planted in corn
W2 = # of acres of Farm 2 planted in wheat
MIN 100 C1 + 120 C2 + 90 W1 + 80 W2
SUBJECT TO
2) C1 + W1 <= 100
3) C2 + W2 <= 100
4) 500 C1 + 650 C2 >= 7000
5) 400 W1 + 350 W2 >= 11000
END
Tableau #1
c1     c2    
w1     w2    
s1     s2    
s3     s4    
-p          
1      0     
1      0     
1      0     
0      0     
0      100  
0      1     
0      1     
0      1     
0      0     
0      100  
500    650   
0      0     
0      0     
-1     0     
0      7000
0      0     
400    350   
0      0     
0      -1    
0      11000
100    120   
90     80    
0      0     
0      0     
1      0    
Tableau #2
c1         
c2         
w1         
w2         
s1         
s2         
s3         
s4         
-p                    
1          
0          
1          
0          
1          
0          
0          
0          
0          
100       
-0.769231  
0          
0          
1          
0          
1          
0.00153846
0          
0          
89.2308   
0.769231   
1          
0          
0          
0          
0          
-0.00153846
0          
0          
10.7692   
0          
0          
400        
350        
0          
0          
0          
-1         
0          
11000     
7.69231    
0          
90         
80         
0          
0          
0.184615   
0          
1          
-1292.31  
Tableau #3
c1         
c2         
w1         
w2         
s1         
s2         
s3         
s4         
-p                    
1          
0          
0          
-0.875     
1          
0          
0          
0.0025     
0          
72.5      
-0.769231  
0          
0          
1          
0          
1          
0.00153846
0          
0          
89.2308   
0.769231   
1          
0          
0          
0          
0          
-0.00153846
0          
0          
10.7692   
0          
0          
1          
0.875      
0          
0          
0          
-0.0025    
0          
27.5      
7.69231    
0          
0          
1.25       
0          
0          
0.184615   
0.225      
1          
-3767.31  

for better view
Hey , I downloaded LINDO just now and used for the first time .
here are result
Global optimal solution found.
Objective
value:                             
3767.308
Infeasibilities:                             
0.000000
Total solver
iterations:                            
2
Elapsed runtime
seconds:                         
3.95
Model Class: LP
Total
variables:                     
4
Nonlinear
variables:                 
0
Integer
variables:                   
0
Total
constraints:                   
5
Nonlinear
constraints:               
0
Total
nonzeros:                     
12
Nonlinear
nonzeros:                  
0
                               
Variable          
Value        Reduced Cost
                                     
C1       
0.000000           
7.692308
                                     
C2       
10.76923           
0.000000
                                     
W1       
27.50000           
0.000000
                                     
W2       
0.000000           
1.250000
                                    
Row    Slack or
Surplus      Dual Price
                                      
1       
3767.308          
-1.000000
                                      
2       
72.50000           
0.000000
                                      
3       
89.23077           
0.000000
                                      
4       
0.000000         
-0.1846154
                                      
5       
0.000000         
-0.2250000