In: Statistics and Probability
Repair Time in Hours |
Months Since Last Service |
Type of Repair |
Repairperson |
2.9 |
2 |
Electrical |
Dave Newton |
3 |
6 |
Mechanical |
Dave Newton |
4.8 |
8 |
Electrical |
Bob Jones |
1.8 |
3 |
Mechanical |
Dave Newton |
2.9 |
2 |
Electrical |
Dave Newton |
4.9 |
7 |
Electrical |
Bob Jones |
4.2 |
9 |
Mechanical |
Bob Jones |
4.8 |
8 |
Mechanical |
Bob Jones |
4.4 |
4 |
Electrical |
Bob Jones |
4.5 |
6 |
Electrical |
Dave Newton |
a) The equation is y = 4.066667 - 0.61667 X2
The R square is 0.08712. The independent variable therefore explains only 8.7% of the variation in y
b) The p vvalue of the regression model is 0.4. At 5% level of significance the model is not significant.
The data is as follows :
R Square | 0.08712 | ||||
Adjusted R Square | -0.02699 | ||||
Standard Error | 1.093351 | ||||
Observations | 10 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 1 | 0.912667 | 0.912667 | 0.763472 | 0.407707 |
Residual | 8 | 9.563333 | 1.195417 | ||
Total | 9 | 10.476 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 4.066667 | 0.446359 | 9.110759 | 1.69E-05 | 3.037362 |
X2 | -0.61667 | 0.705755 | -0.87377 | 0.407707 | -2.24414 |
RESIDUAL OUTPUT | |||||
Observation | Predicted y | Residuals | |||
1 | 4.066667 | -1.16667 | |||
2 | 3.45 | -0.45 | |||
3 | 4.066667 | 0.733333 | |||
4 | 3.45 | -1.65 | |||
5 | 4.066667 | -1.16667 | |||
6 | 4.066667 | 0.833333 | |||
7 | 3.45 | 0.75 | |||
8 | 3.45 | 1.35 | |||
9 | 4.066667 | 0.333333 | |||
10 | 4.066667 | 0.433333 | |||
c) The equation is y = 4.62 -1.6 X3
The R square for the model is 0.61092.The independent variable is thus able to explain 61% of the variation in the y
d) The p value is 0.007563 and the model is thus statistically significant.
The data is as follows :
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.781614 | |||||||||
R Square | 0.61092 | |||||||||
Adjusted R Square | 0.562285 | |||||||||
Standard Error | 0.713793 | |||||||||
Observations | 10 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 1 | 6.4 | 6.4 | 12.56133 | 0.007573 | |||||
Residual | 8 | 4.076 | 0.5095 | |||||||
Total | 9 | 10.476 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
Intercept | 4.62 | 0.319218 | 14.47288 | 5.08E-07 | 3.883882 | 5.356118 | 3.883882 | 5.356118 | ||
X3 | -1.6 | 0.451442 | -3.5442 | 0.007573 | -2.64103 | -0.55897 | -2.64103 | -0.55897 | ||
RESIDUAL OUTPUT | ||||||||||
Observation | Predicted y | Residuals | ||||||||
1 | 3.02 | -0.12 | ||||||||
2 | 3.02 | -0.02 | ||||||||
3 | 4.62 | 0.18 | ||||||||
4 | 3.02 | -1.22 | ||||||||
5 | 3.02 | -0.12 | ||||||||
6 | 4.62 | 0.28 | ||||||||
7 | 4.62 | -0.42 | ||||||||
8 | 4.62 | 0.18 | ||||||||
9 | 4.62 | -0.22 | ||||||||
10 | 3.02 | 1.48 | ||||||||
e) The equation is y = 2.962567 + 0.291444X1 -1.10241 X2 -0.60909 X3
The R square of the model is 0.9009 ie 90% of the variation in y is explained by the model. The p value is also highly significant.
f) Addition of X3 or repairperson is not statistically signicant as the p value is 0.167 >0.05 X1 and X2 are significant.
The data is as follows :
ANOVA | |||||||||
df | SS | MS | F | Significance F | |||||
Regression | 3 | 9.430492 | 3.143497 | 18.04002 | 0.002091 | ||||
Residual | 6 | 1.045508 | 0.174251 | ||||||
Total | 9 | 10.476 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | ||
Intercept | 2.962567 | 0.587176 | 5.045452 | 0.002344 | 1.5258 | 4.399334 | 1.5258 | 4.399334 | |
X1 | 0.291444 | 0.083598 | 3.486238 | 0.013043 | 0.086886 | 0.496002 | 0.086886 | 0.496002 | |
X2 | -1.10241 | 0.303344 | -3.63418 | 0.010911 | -1.84466 | -0.36015 | -1.84466 | -0.36015 | |
X3 | -0.60909 | 0.38793 | -1.5701 | 0.167444 | -1.55832 | 0.34014 | -1.55832 | 0.34014 | |