Question

In: Advanced Math

Let F3={cos⁡(t),sin⁡(t),cos⁡(3t),sin⁡(3t)} and T3={cos3(t),cos2(t)sin(t),cos(t)sin2(t),sin3(t)}. Use the power reduction formulas and the triple angle identities to show...

Let F3={cos⁡(t),sin⁡(t),cos⁡(3t),sin⁡(3t)} and T3={cos3(t),cos2(t)sin(t),cos(t)sin2(t),sin3(t)}. Use the power reduction formulas and the triple angle identities to show the following:

  1. Show T3⊆Span(F3).
  2. Show F3⊆Span(T3).

Solutions

Expert Solution


Related Solutions

Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between...
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between the unit tangent vector and the z-axis is the same. Then show that the same result holds true for the unit normal and binormal vectors.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT