In: Physics
A 5-cm diameter copper ball is heated to 300 C. Take h = 10 W/m^2*K.
A) Make a graph of temperature versus time for copper then for aluminum. Include the Matlab script or Excel data tables for these 2 graphs.
B) What value of K would make it so that this situation could not be treated as a lumpted system (Biot-Number < 0.1)?
given
diameter d = 5 cm
hence surface area A = pi*d^2
temperature T = 300C = 300 + 273.16 = 573.16 K
also, h = 10 W/m^2 K
a. at tiem t, temeprature is T
then
heat radiated = q
dq/dt = sigma*A*(T^4 - To^4)
also
q = mCT
hence
dq/dt = mCdT/dt
hence
mCdT/dt = sigma*A*(T^4 - To^4)
mCdT/(T^4 - To^4) = sigma*A*dt
[ln((To - T)*(300 + To)/(T + To)*(To - 300)) + 2*(arctan(T/To) - arctan(300/To))]/4To^3 = sigma*A*t/mC
now
density of copper rhoc = 8960 kg/m^3
density of aluminium, rhoa = 2700 kg/m^3
hence
m = rho*pi*d^3/6
copper, Cc = 385 J/kg C
aluminium, Ca = 902 J / Kg C
hence
[ln((To - T)*(300 + To)/(T + To)*(To - 300)) + 2*(arctan(T/To) - arctan(300/To))]/4To^3 = sigma*A*t/mC
To = 25 C ( outside temeprature)
sigma = 5.67*10^-8
ln((T - 25)/(T + 25)) + 2*(arctan(T/25)) = 0.11243611079*t/mC + 2.808271
plotting T vs t
for copper
mC = 225.7757920
hence
data:
0.0299094 300
11.37531326 295
23.11197902 290
35.26050395 285
47.8429571 280
60.88301326 275
74.40610173 270
88.43957193 265
103.0128782 260
118.1577864 255
133.9086053 250
150.302446 245
167.3795148 240
185.1834424 235
203.7616566 230
223.1658052 225
243.4522359 220
264.682544 215
286.9241982 210
310.2512583 205
334.7452011 200
360.4958738 195
387.6025981 190
416.1754547 185
446.3367827 180
478.2229376 175
511.986361 170
547.7980298 165
585.8503677 160
626.3607255 155
669.5755637 150
715.7755106 145
765.281518 140
818.4624042 135
875.7441671 130
937.6215752 125
1004.672721 120
1077.577472 115
1157.1411 110
1244.324923 105
1340.286513 100
1446.433281 95
1564.495029 90
1696.624074 85
1845.536461 80
2014.716306 75
2208.720712 70
2433.652105 65
2697.924844 60
3013.585751 55
3398.773835 50
3882.815947 45
4518.511489 40
5419.563043 35
6935.85813 30
graph:
for aluminium
mC = 159.3965572615
hence
data
t T
0.021115884 300
8.030913121 295
16.31693927 290
24.89373588 285
33.77688361 280
42.98309673 275
52.53032819 270
62.43788654 265
72.72656643 260
83.41879435 255
94.53879209 250
106.11276 245
118.1690835 240
130.7385655 235
143.8546899 230
157.5539198 225
171.8760364 220
186.8645256 215
202.56702 210
219.0358054 205
236.3284041 200
254.5082476 195
273.6454567 190
293.8177476 185
315.1114913 180
337.622954 175
361.4597586 170
386.742614 165
413.6073705 160
442.2074764 155
472.7169317 150
505.3338585 145
540.2848471 140
577.8302814 135
618.2709137 130
661.9560482 125
709.2938152 120
760.7641969 115
816.9357129 110
878.4870467 105
946.2354396 100
1021.174516 95
1104.525508 90
1197.80794 85
1302.939325 80
1422.379433 75
1559.345553 70
1718.14597 65
1904.721175 60
2127.576164 55
2399.516987 50
2741.248248 45
3190.046057 40
3826.183857 35
4896.680452 30
graph
B) Bi = Lc*h/k
h = 10
Lc = 4*pi*r^3/3*4*pi*r^2 = r/3 = d/6
k = ?
0.1 = 0.05*10/6k
k = 0.83333333333 will make the system B = 0.1 and then it cant be treated as a lumped system