Question

In: Statistics and Probability

The rate at which customers are served at an airport check-in counter is a Poisson process...

The rate at which customers are served at an airport check-in counter is a Poisson process with a rate of 10.4 per hour. The probability that more than 50 customers are served at the counter in the next 5 hours is P(Xp>50). If this is solved as a Poisson variable, the calculations will be tedious. So we use the normal approximation. Now, P(Xp > 50)=P(Z > a), where Z is the standard normal variable. What is the value of a? Please report your answer in 3 decimal places

Solutions

Expert Solution

SOLUTION:

From given data,

Poisson process with a rate of 10.4 per hour. The probability that more than 50 customers are served at the counter in the next 5 hours is P(Xp>50). If this is solved as a Poisson variable, the calculations will be tedious. So we use the normal approximation. Now, P(Xp > 50)=P(Z > a), where Z is the standard normal variable.

Let  Xp be a Poisson random variable which denotes the number of customers that are served at the counter in the next 5 hours.

Then : k = t

= 10.4 * 5

= 52

Now let Y be a normal random variable which we will use to approximate  Xp .

The continuity correction that we must introduce to facilitate this approximation is:

P( Xp > k) = P(Y > k - 0.5)

P( Xp > 50) =  P( Xp > 49 ) = P( Y >48.5 )

P( Y >48.5 ) = P[( Y - 52 ) / > (48.5 - 52 ) / ]

= P(Z > -3.5 / )

   = P(Z > -0.48536 )

= > a = -0.485


Related Solutions

Customers arrive to the checkout counter of a convenience store according to a Poisson process at...
Customers arrive to the checkout counter of a convenience store according to a Poisson process at a rate of two per minute. Find the mean, variance, and the probability density function of the waiting time between the opening of the counter and the following events: a. The arrival of the second customer. b. The arrival of the third customer. c. What is the probability that the third customer arrives within 6 minutes? You can use a computer if you’d like...
The number of passengers arriving at a checkout counter of an international airport follows a Poisson...
The number of passengers arriving at a checkout counter of an international airport follows a Poisson distribution. On average, 4 customers arrive every 5-minutes period. The probability that over any 10-minute interval, at most 5 passengers will arrive at the checkout counter is A:- 0.1221 B:- 0.1250 C:- 0.2215 D:- 0.8088 The number of customers who enter a bank is thought to be Poisson distributed with a mean equal to 10 per hour. What are the chances that 2 or...
Small aircraft arrive at a private airport according to a given Poisson process at a rate...
Small aircraft arrive at a private airport according to a given Poisson process at a rate of 6 per hour. What is the probability that exactly 5 small aircraft arrive in the first hour (after opening) and exactly 7 arrive in the hour after that? What is the probability that fewer than 5 small aircraft arrive in the first hour and at least 10 arrive in the hour after that? What is the probability that exactly 5 small aircraft arrive...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. What is the probability that at least 7 small aircraft arrive during a 1-hour period? What is the probability that at least 11 small aircraft arrive during a 1-hour period? What is the probability that at least 23...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. (Round your answers to three decimal places.) (a) What is the probability that exactly 8 small aircraft arrive during a 1-hour period? What is the probability that at least 8 small aircraft arrive during a 1-hour period? What...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. (Round your answers to three decimal places.) (a) What is the probability that exactly 6 small aircraft arrive during a 1-hour period? What is the probability that at least 6 small aircraft arrive during a 1-hour period? What...
It is estimated that an average of 30 customers will arrive at an Airport check-in counters...
It is estimated that an average of 30 customers will arrive at an Airport check-in counters per hour. a) Let X be the number of customers arrive at the counter over three hours. What is the distribution of X? b) Let X be the number of customers arrive at the counter over three hours. How many customers would you expect in three hours? c)What is the probability of 3 customers arriving within 10 mins? State the appropriate distribution and any...
A small auto parts store has a single counter with one employee. Customers arrive at the counter at the rate of 10 per hour according to a Poisson distribution.
 A small auto parts store has a single counter with one employee. Customers arrive at the counter at the rate of 10 per hour according to a Poisson distribution. The employee can handle 20 customers per hour and service times are exponentially distributed. Calculate (A) The probability that a customer finds an empty counter in the auto parts store (no customers waiting or being served) (B) The average number of customers waiting in the que at the auto parts store (i.e.,...
Customers arrive at a service facility according to a Poisson process of rate 5 /hour Let...
Customers arrive at a service facility according to a Poisson process of rate 5 /hour Let N(t) be the number of customers that have arrived up to time t hours). a. What is the probability that there is at least 2 customer walked in 30 mins? b.If there was no customer in the first30 minutes, what is the probability that you have to wait in total of more than 1 hours for the 1 st customer to show up? c.For...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter λ = 8t. (a) What is the probability that exactly 6 small aircraft arrive during a 1-hour period? At least 6? At least 10? (b) What are the expected value and standard deviation of the number of small aircraft that arrive during...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT