In: Math
The next two questions (7 and 8) refer to the following:
The weight of bags of organic fertilizer is normally distributed with a mean of 60 pounds and a standard deviation of 2.5 pounds.
7. What is the probability that a random sample of 33 bags of organic fertilizer has a total weight between 1963.5 and 1996.5 pounds?
8. If we take a random sample of 9 bags of organic fertilizer, there is a 75% chance that their mean weight will be less than what value? Keep 4 decimal places in intermediate calculations and report your final answer to 4 decimal places.
The next two questions (8 and 9) refer to the following:
Question 10 and 11
Suppose that 40% of students at a university drive to campus.
10. If we randomly select 100 students from this university, what is the approximate probability that less than 35% of them drive to campus?
Keep 6 decimal places in intermediate calculations and report your final answer to 4 decimal places.
11. If we randomly select 100 students from this university, what is the approximate probability that more than 50 of them drive to campus?
Keep 6 decimal places in intermediate calculations and report your final answer to 4 decimal places.
12. Suppose that IQs of adult Canadians follow a normal distribution with standard deviation 15. A random sample of 30 adult Canadians has a mean IQ of 112.
We would like to construct a 97% confidence interval for the true mean IQ of all adult Canadians. What is the critical value z* to be used in the interval? (You do not need to calculate the calculate the confidence interval. Simply find z*. Input a positive number since we always use the positive z* value when calculating confidence intervals.)
Report your answer to 2 decimal places.
7) mean of total weight=60*33=1980
std dev of total weight=√33*2.5=14.36
we need to calculate probability for ,  
           
           
           
P (   1963.5   < X <  
1996.5   )      
           
   
=P( (1963.5-1980)/14.36 < (X-µ)/σ <
(1996.5-1980)/14.36)      
           
           
       
          
           
           
   
P (    -1.149   < Z <   
1.149   )       
           
   
= P ( Z <    1.149   ) - P ( Z
<   -1.149   ) =   
0.8747   -    0.1253   =
   0.7494   (answer)
8)
µ =    60      
           
           
σ =    2.5      
           
           
n=   9          
           
       
proportion=   0.7500      
           
           
          
           
           
Z value at    0.75   =  
0.674   (excel formula =NORMSINV(  
0.75   ) )      
   
z=(x-µ)/(σ/√n)          
           
           
so, X=z * σ/√n +µ=   0.674   *  
2.5   / √    9   +  
60   =  
60.5621(answer)