Question

In: Statistics and Probability

Suppose X = 20, n = 50 a. Calculate the estimate for p, the true probability...

Suppose X = 20, n = 50

a. Calculate the estimate for p, the true probability of success

b. Calculate and interpret a 90% Confidence interval for the true probability of success.

c. You would like to know if p is actually greater than 1/3, so you test the following null hypothesis:

H0: p ≤ 1/3 What is the alternative hypothesis? Conduct and interpret this test at the 0.05 significance level.

Solutions

Expert Solution



Related Solutions

Using the normal distribution, calculate the following probabilities: a) P(X≤16|n=50, p=0.70) b) P(10≤X≤16|n=50, p=0.50)
Using the normal distribution, calculate the following probabilities: a) P(X≤16|n=50, p=0.70) b) P(10≤X≤16|n=50, p=0.50)
Suppose that x has a binomial distribution with n = 50 and p = 0.6, so...
Suppose that x has a binomial distribution with n = 50 and p = 0.6, so that μ = np = 30 and σ = np(1 − p) = 3.4641. Approximate the following probabilities using the normal approximation with the continuity correction. (Hint: 25 < x < 39 is the same as 26 ≤ x ≤ 38. Round your answers to four decimal places.) (a) P(x = 30) (b) P(x = 25) ( c) P(x ≤ 25) (d) P(25 ≤...
Binomial Distribution. Suppose that X has a binomial distribution with n = 50 and p =...
Binomial Distribution. Suppose that X has a binomial distribution with n = 50 and p = 0.6. Use Minitab to simulate 40 values of X. MTB > random 40 c1; SUBC > binomial 50 0.6. Note: To find P(X < k) for any k > 0, use ‘cdf’ command; this works by typing: MTB > cdf; SUBC > binomial 50 0.6. (a) What proportion of your values are less than 30? (b) What is the exact probability that X will...
x~N(55,36). find p(x>72) and p(50<=x<=68)
x~N(55,36). find p(x>72) and p(50<=x<=68)
Consider a hyper geometric probability distribution with n=7, R= 8 and N=17 a) calculate P(x =5)...
Consider a hyper geometric probability distribution with n=7, R= 8 and N=17 a) calculate P(x =5) b) calculate P(x=4) c) calculate P(x <=1) d) calculate the mean and strandard deviation of this distribution
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong...
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong statement about the random variable X. a. The maximum possible value of X is 20. b. The minimum possible value of X is 0. c. The variance of X is 4.2. d. The expected value of X is 14. e. Pr(X = 19)+ Pr(X = 1)= 1
For a binomial probability distribution, n = 130 and p = 0.60. Let x be the...
For a binomial probability distribution, n = 130 and p = 0.60. Let x be the number of successes in 130 trials. a. Find the mean and standard deviation of this binomial distribution. a. Find the mean and the standard deviation of this binomial distribution. b. Find to 4 decimal places P(x ≤ 75) using the normal approximation. P(x ≤ 75) = c. Find to 4 decimal places P(67 ≤ x ≤ 72) using the normal approximation. P(67 ≤ x...
Find the following probabilities. A.) P(X=5), X FOLLOWING A BINOMIAL DISTRIBUTION, WITH N=50 AND P=.7. B.)...
Find the following probabilities. A.) P(X=5), X FOLLOWING A BINOMIAL DISTRIBUTION, WITH N=50 AND P=.7. B.) P(X = 5), X following a Uniform distribution on the interval [3,7]. c.) P(X = 5), X following a Normal distribution, with µ = 3, and σ = .7. (To complete successfully this homework on Stochastic Models, you need to use one of the software tools: Excel, SPSS or Mathematica, to answer the following items, and print out your results directly from the software....
A binomial probability distribution has p = .20 and n = 100. If required, round your...
A binomial probability distribution has p = .20 and n = 100. If required, round your answers to four decimal places. Use “Continuity correction factor, if necessary”. Use Table 1 in Appendix B. a. What are the mean and standard deviation? = = b. Is this situation one in which binomial probabilities can be approximated by the normal probability distribution? SelectYesNoItem 3 Explain. SelectBecause np≥5 and n(1-p)≥5 Because np≥5 or n(1-p)≥5 Item 4 c. What is the probability of exactly...
Suppose X and Y are two independent random variables with X~N(1,4) and Y~N(4,6). a. P(X <...
Suppose X and Y are two independent random variables with X~N(1,4) and Y~N(4,6). a. P(X < -1.5). b. P(0.5Y+1 > 5). c. P(-2 < X + Y < 5). d. P(X – Y ≥ 3).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT