In: Finance
You have $100 to invest in a portfolio. The portfolio is composed of a risky asset with an expected rate of return of 12 percent and a standard deviation of 15 percent and a Treasury bill with a rate of return of 5 percent. What percentage of your money should be invested in the risky asset to form a portfolio with an expected rate of return of 9 percent?
Risky Asset=Asset 1 Treasury Bill=Asset 2 | ||||||||||
Return of asset1=R1= | 12% | |||||||||
Return of asset2=R2= | 5% | |||||||||
Standard deviation of asset 1=S1 | 15% | |||||||||
Standard deviation of asset 2=S2 | 0 | |||||||||
Covariance(1,2)= | 0 | |||||||||
w1=Investment in asset 1 | ||||||||||
w2=Investment in asset 2 | ||||||||||
Portfolio Return=Rp | ||||||||||
w1*R1+w2*R2=w1*12+w2*5 | ……..Equation (1) | |||||||||
Vp=Portfolio Variance=(w1^2)*(S1^2)+(w2^2)*(S2^2)+2*w1*w2*Cov(1,2) | ||||||||||
Portfolio Variance=(w1^2)*(15^2)+(w2^2)*0+2*w1*w2*0 | ||||||||||
Vp=Portfolio Variance=(w1^2)*225……………Equation (2) | ||||||||||
Portfolio Standard Deviation=Square root of Variance | ||||||||||
w1 | w2 | Rp=w1*12+w2*5 | Vp=(w1^2)*225 | Sp=Square root of Vp | ||||||
Weight of | Weight of | Portfolio | portfolio | Portfolio | ||||||
Risky Asset | T-Bill | Return(%) | Variance | Std. Deviation(%) | ||||||
0 | 1 | 5 | 0 | 0 | ||||||
0.1 | 0.9 | 5.7 | 2.25 | 1.5 | ||||||
0.2 | 0.8 | 6.4 | 9 | 3 | ||||||
0.3 | 0.7 | 7.1 | 20.25 | 4.5 | ||||||
0.4 | 0.6 | 7.8 | 36 | 6 | ||||||
0.5 | 0.5 | 8.5 | 56.25 | 7.5 | ||||||
0.5714 | 0.4286 | 8.9998 | 73.462 | 8.571 | ||||||
0.6 | 0.4 | 9.2 | 81 | 9 | ||||||
0.7 | 0.3 | 9.9 | 110.25 | 10.5 | ||||||
0.8 | 0.2 | 10.6 | 144 | 12 | ||||||
0.9 | 0.1 | 11.3 | 182.25 | 13.5 | ||||||
1 | 0 | 12 | 225 | 15 | ||||||
Investment in RISKY ASSET | $57.14 | (0.5714*100) | ||||||||
Investment in TREASURY BILLS | $42.86 | (0.4286*100) | ||||||||
Standard Deviation of the Portfolio | 8.571 | % | ||||||||