Question

In: Physics

A tank open to the atmosphere at the top has a hole in its side. The...

A tank open to the atmosphere at the top has a hole in its side. The hole is 44.0 cm above the ground. Water spewing from the hole lands 0.600m away from the tank on the ground. How high does the water stand in the tank? (With explanation please).

Solutions

Expert Solution


Related Solutions

In the figure, the top tank, which is open to the atmosphere, contains water and the...
In the figure, the top tank, which is open to the atmosphere, contains water and the bottom tank contains oil covered by a piston. The tank on the right has a freely movable partition that keeps the oil and water separate. The partition is a vertical distance 0.10 m below the open surface of the water. If the piston in the bottom tank is 0.50 m below the open surface of the water and has a surface area of 8.3...
A large storage tank, open to the atmosphere at the top and filled with water, develops...
A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 17.1 m below the water level. If the rate of flow from the leak is 2.30 ? 10?3 m3/min, determine the following. (a) Determine the speed at which the water leaves the hole. m/s (b) Determine the diameter of the hole. mm
A large storage tank, open to the atmosphere at the top and filled with water, develops...
A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 13.9 m below the water level. If the rate of flow from the leak is3.00 ✕ 10−3 m3/min, determine the following. (a) Determine the speed at which the water leaves the hole. m/s (b) Determine the diameter of the hole. mm
A large storage tank, open to the atmosphere at the top and filled with water, develops...
A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 13.9 m below the water level. If the rate of flow from the leak is3.00 ✕ 10−3 m3/min, determine the following. (a) Determine the speed at which the water leaves the hole. m/s (b) Determine the diameter of the hole. mm
A large storage tank, open to the atmosphere at the top and filled with water, develops...
A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 11.6 m below the water level. Assume the tank is large so the velocity of the water at the top of the tank is zero. The rate of flow from the leak is 2.53×10−3 m3/min. (a) Determine the speed at which the water leaves the hole. (b) Determine the diameter of the hole (in millimeters)....
(20.1) A very large tank of water with its top open to the air has a...
(20.1) A very large tank of water with its top open to the air has a small hole in its side. The hole lies at a depth of 9.8m below the top surface of the water. Compute the speed with which water spurts out of the hole. [Take g = 10m/s2 and assume that the hole is small enough that the water level in the tank is changing very slowly.] (20.2) Modern construction standards require that roofs be securely attached...
A large storage tank with an open top is filled to a height h0. The tank...
A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank. Find an expression for how far from the tank the exiting stream lands. (Let d be the horizontal distance the stream of water travels. Use any variable or symbol stated above as necessary. ? for the density of water and g. Do not substitute numerical values; use variables only.)
A small circular hole 6.00 mm in diameter is cut in the side of a large water tank
A small circular hole 6.00 mm in diameter is cut in the side of a large water tank, 14.0 m below the tank's water level. The top of the tank is open to the air. What is the speed of efflux? What is the volume discharged per unit time?
A rectangular tank with a square​ base, an open​ top, and a volume of 1372 ft...
A rectangular tank with a square​ base, an open​ top, and a volume of 1372 ft cubed is to be constructed of sheet steel. Find the dimensions of the tank that has the minimum surface area.
Water stands at a depth H in a large open tank whose side walls are vertical.
Water stands at a depth H in a large open tank whose side walls are vertical. A hole is made in one of the walls at a depth d below the water surface.At what distance R from the foot of the wall of the tank does the emergent stream strike the floor?How far above the bottom of the tank could the second hole be cut so that the stream emerging from it could have the same range as for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT