In: Chemistry
What is the experimental yield (in g of precipitate) when 19.8 mL of a 0.663 M solution of barium hydroxide is combined with 19.2 mL of a 0.727 M solution of aluminum nitrate at a 77.4% yield?
volume of Ba(OH)2, V = 19.8 mL
= 1.98*10^-2 L
use:
number of mol in Ba(OH)2,
n = Molarity * Volume
= 0.663*1.98*10^-2
= 1.313*10^-2 mol
volume of Al(NO3)3, V = 19.2 mL
= 1.92*10^-2 L
use:
number of mol in Al(NO3)3,
n = Molarity * Volume
= 0.727*1.92*10^-2
= 1.396*10^-2 mol
Balanced chemical equation is:
3 Ba(OH)2 + 2 Al(NO3)3 ---> 2 Al(OH)3 + 3 Ba(NO3)2
3 mol of Ba(OH)2 reacts with 2 mol of Al(NO3)3
for 1.313*10^-2 mol of Ba(OH)2, 8.752*10^-3 mol of Al(NO3)3 is required
But we have 1.396*10^-2 mol of Al(NO3)3
so, Ba(OH)2 is limiting reagent
we will use Ba(OH)2 in further calculation
Molar mass of Al(OH)3,
MM = 1*MM(Al) + 3*MM(O) + 3*MM(H)
= 1*26.98 + 3*16.0 + 3*1.008
= 78.004 g/mol
According to balanced equation
mol of Al(OH)3 formed = (2/3)* moles of Ba(OH)2
= (2/3)*1.313*10^-2
= 8.752*10^-3 mol
use:
mass of Al(OH)3 = number of mol * molar mass
= 8.752*10^-3*78
= 0.6827 g
% yield = actual mass*100/theoretical mass
77.4= actual mass*100/0.6827
actual mass=0.5284 g
Answer: 0.528 g