Question

In: Other

A high-­viscosity oil is transported through a wide rectangular duct of length L, width W and...

A high-­viscosity oil is transported through a wide rectangular duct of length L, width W and depth 2B via pressure-­driven flow. The duct is inclined at an angle b? below the horizontal plane (gravity may be assumed to act downwards in the vertical direction), and is sufficiently broad that edge effects may be neglected in the transverse (x2) direction. The pressure at the upstream end of the duct (x1=0) is Po, and at the downstream end (x1=L) is PL. The flow may be regarded as laminar and isothermal, and the oil is a Newtonian liquid;? the duct may be regarded as stationary.

(a) Starting with the appropriate form of the Continuity Equation and Equations of Motion derive an equation for determining the x1 component of velocity at steady state. Be sure to identify all assumptions and boundary conditions. You should attach a marked equation sheet showing the manner in which you simplified the Navier-­ Stokes Equations.

(b) Derive an equation for the volume flow rate of oil through the duct at steady state under these conditions.

(c) Derive an expression for the shear stress T31 at the upper surface of the duct (x3 = B) at steady state.

Solutions

Expert Solution


Related Solutions

A rectangular coil with resistance R has N turns, each of length and width w as...
A rectangular coil with resistance R has N turns, each of length and width w as shown in Figure P31.29. The coil moves into a uniform magnetic field with constant velocity . What are the magnitude and direction of the total magnetic force on the coil for the following situations? (Use the following as necessary: N,B, w, v, and R.) Figure P31.29 (a) The coil enters the magnetic field. F =   [Direction?] (b) The coil moves within the field. F...
The length l, width w, and height h of a box change with time. At a...
The length l, width w, and height h of a box change with time. At a certain instant the dimensions are l = 2 m and w = h = 3 m, and l and w are increasing at a rate of 7 m/s while h is decreasing at a rate of 5 m/s. At that instant find the rates at which the following quantities are changing. (a) The volume. m3/s (b) The surface area. m2/s (c) The length of...
Consider a rectangular plate of width L and height W. Three of the sides (left, bottom,...
Consider a rectangular plate of width L and height W. Three of the sides (left, bottom, and right side) are maintained at a constant temperature of T1 whereas the top side is maintained at T2. Write a general computer program to solve for the steady state temperature solution of the plate using finite difference techniques and the Gauss-Seidel iterative method for any arbitrary grid mesh m x n. Obtain a temperature solution using a grid mesh of 10x10, 20x20, and...
Design a rectangular milk carton box of width w, length ll, and height h which holds...
Design a rectangular milk carton box of width w, length ll, and height h which holds 540 cm^3 of milk. The sides of the box cost 1 cent/cm^2 and the top and bottom cost 3 cent/cm^2. Find the dimensions of the box that minimize the total cost of materials used.
​The figure below shows a rectangular coil of length 1 and width w consisting of N turns of conducting wire
The figure below shows a rectangular coil of length 1 and width w consisting of N turns of conducting wire, moving to the right with a constant velocity v. The coil moves into a region of uniform magnetic field B, pointing into the page and perpendicular to the plane of the coil. The total resistance of the coil is R. Find the magnitude and direction of the total magnetic force on the coil for the following situations. (Use the following as...
What will be the length (L in meter) of a rectangular footing to support rectangular column...
What will be the length (L in meter) of a rectangular footing to support rectangular column 20x70 cm and carries a dead load of 625 kN and live load of 426 kN. The net allowable bearing pressure is 155 kPa. The design should be according to (ACI) code with the following parameters: fc’ = 28 MPa, fy = 420 MPa.
Q1. Gradually varied flow of water in a wide rectangular channel with a per unit width...
Q1. Gradually varied flow of water in a wide rectangular channel with a per unit width flow rate of 1 m3 /s-m and a Manning coefficient of n = 0.02 is considered. The slope of the channel is 0.001, and at the location x=0.0, the flow depth is measured to be 0.80 m. (a) Determine the normal and critical depths of the flow and classify the water surface profile, and (b) calculate the flow depth y at x=1000 m by...
A 2-m-high, 4-m-wide rectangular advertisement panel is attached to a 4-m-wide, 0.15 m-high rectangular concrete block...
A 2-m-high, 4-m-wide rectangular advertisement panel is attached to a 4-m-wide, 0.15 m-high rectangular concrete block (density = 2300 kg/m3) by two 5-cm-diameter, 4-m-high (exposed part) poles, as shown in the figure. If the sign is to withstand 150 km/h winds from any direction, determine (a) the maximum drag force on the panel, (b) the drag force acting on the poles, and (c) the minimum length L of the concrete block for the panel to resist the winds. Take the...
You are shooting a rectangular target with width w and height h. Assume that hitting any...
You are shooting a rectangular target with width w and height h. Assume that hitting any point inside the rectangle is equally likely. Let X be the distance of the point you hit to the center of the rectangle. Find the PDF, CDF, mean and variance of X.
The length ℓ, width w, and height h of a box change with time. At a...
The length ℓ, width w, and height h of a box change with time. At a certain instant the dimensions are ℓ = 4 m and w = h = 1 m, and ℓ and w are increasing at a rate of 8 m/s while h is decreasing at a rate of 2 m/s. At that instant find the rates at which the following quantities are changing. (a) The volume. (b) The surface area. (c) The length of a diagonal....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT