In: Statistics and Probability
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 12 supermarkets from Region 1 had mean sales of 81.4 with a standard deviation of 8.4. A random sample of 17 supermarkets from Region 2 had a mean sales of 89.9 with a standard deviation of 6.4. Does the test marketing reveal a difference in potential mean sales per market in Region 2? Let μ1 be the mean sales per market in Region 1 and μ2μ2 be the mean sales per market in Region 2. Use a significance level of α=0.02 for the test. Assume that the population variances are not equal and that the two populations are normally distributed.
Step 1 of 4: State the null and alternative hypotheses for the test.
Step 2 of 4: Compute the value of the t test statistic. Round your answer to three decimal places.
Step 3 of 4: Determine the decision rule for rejecting the null hypothesis H0H0. Round your answer to three decimal places.
Step 4 of 4: State the test's conclusion.
1)
Ho :   µ1 - µ2 =   0
Ha :   µ1-µ2 ╪   0
      
2)
Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   81.400  
           
   
standard deviation of sample 1,   s1 =   
8.4000          
       
size of sample 1,    n1=   12  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   89.900  
           
   
standard deviation of sample 2,   s2 =   
6.4000          
       
size of sample 2,    n2=   17  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
81.4000   -   89.9   =  
-8.50  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    7.2814  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
2.7454          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-8.5000   -   0   ) /   
2.75   =   -3.0961
c)
Degree of freedom, DF=   n1+n2-2 =   
27  
t-critical value , t* = ± 2.473   (excel formula
=t.inv(α/2,df)
reject Ho if t>2.473 or t <-2.473
d)
reject Ho
There is enough evidence to conclude that there will be a difference in mean sales per market per month between the two regions.