In: Finance
Portfolio Beta and Required Return You hold the positions in the table below. A) What is the beta of your portfolio? B) If you expect the market to earn 14 percent and the risk-free rate is 3.0 percent, what is the required return of the portfolio?
Company Price Shares Beta
Texas, Inc. $30.00 200 2.8
Dollar Earned Stores $20.00 600 2.2
Atomic, Inc. $70.00 400 1.4
Big Truck Corp $40.00 100 -0.6
This problem can be solved two different and equivalent ways. Both ways require the weights of the stocks in the portfolio. In one method, compute the required return for each stock and then use the weights to form the portfolio required return.
The other method uses the weights to compute the portfolio beta. This portfolio beta is used to compute the portfolio required return.
Total Value of a stock is calculated using the formula:
The total value of a stock = Price * Shares
Therefore, Total value of Texas Inc. = 30*200 = 6000
Similarly, Total value of other stocks are mentioned in the below table
Company | Price | Share | Value = Price*Share |
Texas | 30 | 200 | 6000 |
Dollar Earned Stores | 20 | 600 | 12000 |
Atomic | 70 | 400 | 28000 |
Big Truck Corp | 40 | 100 | 4000 |
We need to calculate the weights of different company stocks in the portfolio
Total Value of the portfolio = 6000+12000+28000+4000 = 50000
Weight of Texas = WT = Value of Texas/Total Value of Portfolio = 6000/50000 = 12%
Similarly, We can calculate the weights of other company's stocks in the portfolio and it is mentioned below in the table:
Company | Price | Share | Value = Price*Share | Weights |
Texas | 30 | 200 | 6000 | 12% |
Dollar Earned Stores | 20 | 600 | 12000 | 24% |
Atomic | 70 | 400 | 28000 | 56% |
Big Truck Corp | 40 | 100 | 4000 | 8% |
Total | 50000 |
WT = 12%, WD = 24%, WA = 56%, WB = 8%
Beta of the Stocks are also given:
βT = 2.8, βD = 2.2, βA = 1.4, βB = -0.6
Note: We are using the second method (mentioned in the problem) to solve this problem
Beta of the portfolio can be calculated using the formula:
βP = WT*βT + WD*βD +WA*βA +WB*βB = (12%*2.8) + (24%*2.2) + (56%*1.4) + (8%*(-0.6)) = 1.6
Required Rate on the portfolio can be calculated using CAPM Equation
RP = RF + βP *(RM - RF)
Expected market return = RM = 14%, Risk-free Rate = RF = 3%
Therefore, RP = 3%+1.6*(14%-3%) = 20.6%
Answer
Beta of the portfolio = 1.6
Portfolio return = 20.6%