Question

In: Physics

One end of a nylon rope is tied to a stationary support at the top of...

One end of a nylon rope is tied to a stationary support at the top of a vertical mine shaft of depth 83.0 m. The rope is stretched taut by a box of mineral samples with mass 25.0kg attached at the lower end. The mass of the rope is 1.60 kg. The geologist at the bottom of the mine signals to his colleague at the top by jerking the rope sideways. (Do not neglect the weight of the rope.) What is the wave speed at the bottom of the rope? What is the wave speed at the middle of the rope? What is the wave speed at the top of the rope?

Solutions

Expert Solution


Related Solutions

A rope is tied to a tree limb and is used by a swimmer to swing...
A rope is tied to a tree limb and is used by a swimmer to swing into the water. The person starts from rest with the rope held in the horizontal position, as shown in the figure on the power point file attached, swings downward and then let go of the rope. His initial height is h0 = 415 m and final height is hf = 105 m. If the force due to air resistance is neglected, (30%) What is...
The 1.0 kg block in the figure is tied to the wall with a rope. It...
The 1.0 kg block in the figure is tied to the wall with a rope. It sits on top of the 2.0 kg block. The lower block is pulled to the right with a tension force of 20 N. The coefficient of kinetic friction at both the lower and upper surfaces of the 2.0 kg block is μk = 0.43. What is the tension in the rope holding the 1.0 kg block to the wall? What is the acceleration of...
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.18 ✕ 104 N/m. (a) What is the frequency (in Hz) at which he bounces, given that his mass plus the mass of his equipment is 78.0 kg? (b) How much would this rope stretch (in cm) to break the climber's fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy. (c) Repeat both parts...
1. A 93 kg mountain climber hangs from a nylon rope and stretches it by 14.5...
1. A 93 kg mountain climber hangs from a nylon rope and stretches it by 14.5 cm. If the rope was originally 39.0 m long and its diameter is 1.0 cm, what is Young's modulus for the nylon (in Pa)? Group of answer choices 2.21e+09 Pa 3.12e+09 Pa 3.21e+09 Pa 2.12e+09 Pa 6. If a certain mass of water falls a distance of 50.0 meters and all the energy is effective in heating the water, what will be the temperature...
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.40  104 N/m. (Hz) (a) What is the frequency at which he bounces, given his mass plus equipment to be 70.0 kg? (m) (b) How much would this rope stretch to break the climber's fall, if he free-falls 2.00 m before the rope runs out of slack? (c) Repeat both parts of this problem in the situation where twice this length of nylon rope...
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.1 × 10^4 N/m. Part (a) What is the frequency, in Hz, at which he bounces, given his mass and the mass of his equipment is 86 kg? Part (b) How much would this rope stretch, in centimeters, to break the climber's fall if he free-falls 1.6 m before the rope starts to stretch? Part (c) What is the frequency, in Hz, at...
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.18 ✕ 104 N/m. A) What is the frequency (in Hz) at which he bounces, given that his mass plus the mass of his equipment is 78.0 kg? B) How much would this rope stretch (in cm) to break the climber's fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy. C) Repeat both parts...
One end of a horizontal rope is attached to a prong of an electrically driven tuning...
One end of a horizontal rope is attached to a prong of an electrically driven tuning fork that vibrates at 125 Hz. The other end passes over a pulley and supports a 1.50 kg mass. The linear mass density of the rope is 5.50×10-2 kg/m .a.What is the speed of a transverse wave on the rope?b. What is the wavelength?c. How would your answers to part (A) change if the mass were increased to 3.00 kg?d. How would your answers...
Its mass of 1.5 m long, one end of which is tied to the ceiling of...
Its mass of 1.5 m long, one end of which is tied to the ceiling of the room, is negligible, and a small object with a mass of 0.75 kg is hung on the free end of an inelastic rope. This object makes a circular motion at a speed of 25 rad / s, making an angle of 30 ° with the vertical. a1) What is the rotational kinetic energy of this object? a2) What is the rotational kinetic energy...
One end of a horizontal rope is attached to a prong of anelectrically driven tuning fork...
One end of a horizontal rope is attached to a prong of anelectrically driven tuning fork that vibrates at 120 Hz. The otherend passes over a pulley and supports a 1.70 kg mass. The linear mass density of the rope is0.0590 kg/m. (a) What is the speed of a transverse wave onthe rope?v1.70 kg =1 m/s(b) What is the wavelength?λ1.70 kg =2 m(c) How would your answers to parts (a) and (b) be changed if themass were increased to 2.80...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT