Question

In: Electrical Engineering

Using matlab a) Find the transfer function of a fourth order Butterworth filter and plot the...

Using matlab
a) Find the transfer function of a fourth order Butterworth filter and plot the magnitude response.
b) Find the poles.

Solutions

Expert Solution

Matlab code:

%%
clear all;
close all;
clc;
%%

% since the type of filter is not give
% Let us consider a low pass filter with cut-off frquency fc
% the that data is sampled at fs
% then 2*pi*fc/fs is the cut-off point in rad/sample
% butter is a commond used to design a butter-worth filter with n, Wn as
% paramenter
% n is the order of filter
% Wn is the cut-off frequency
% the command butter give an output [z,p]
% z is the zeros and p is the poles

fc = 300;                   % cut-off frequency
fs = 1000;                  % sample frequency
n = 4;                      % order of filter
[z,p] = butter(n,fc/(fs/2)); % filter design of 4th order and 0.6*pi rad/sample cut-off frequency
freqz(z,p)                     % magnitude and phase response of the system

transfer_function=tf(z,p)           % transfer function of the system
poles=roots(p)                     % is the poles of the system
figure;
pzmap(transfer_function)            % x represent poles and o respresent zeros
grid on;


Magnitude Response:

Pole zero graph:


Related Solutions

Create a 2nd order Butterworth 150 Hz frequency low pass filter. Please provide transfer function and...
Create a 2nd order Butterworth 150 Hz frequency low pass filter. Please provide transfer function and frequency response. Thank you
What I am trying to do is to design a Butterworth Bandpass filter using Matlab, High...
What I am trying to do is to design a Butterworth Bandpass filter using Matlab, High frequency must equal to 16 Hz and lower frequency must be 10Hz (passBand). and the input signal must be a white noise signal. here is my code : mu=0; sigma=2; X= sigma*randn(500,1)+mu; %Generating White Noise signal Fs=500;%Sampling Frequency Fh= 16; Fl=10; order=6; [b,a]=butter(order,[Fh Fl]/(Fs/2),'bandpass');%Butterworth BandPass filter XX=filtfilt(b,a,X);%filter the signal both forward and backword in time Actually, I am not sure about Fs value that...
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of...
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of 1592 Hz and a dc gain of 3dB. Find and present the mathematical transfer function of the filter, showing all your steps. b) Write a Matlab code to plot the magnitude of this function with a linear scale in dB units on the ordinate, and a log scale of frequency on the abscissa. The plot range should be: ordinate- linear scale from -100dB to...
I need to obtain an approximate implementation of a Butterworth low pass first order filter using...
I need to obtain an approximate implementation of a Butterworth low pass first order filter using P-spice. It suppose to have a cutoff frequency of 1000Hz and the attenuation cutoff frequencies fixed at 3db.
Plot the original data and the regression “line” ************USING Matlab************. "Submit plot" USING MATLAB! USING MATLAB!...
Plot the original data and the regression “line” ************USING Matlab************. "Submit plot" USING MATLAB! USING MATLAB! USING MATLAB! ONLY BY USING MATLAB!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 14.9 The concentration of E. coli bacteria in a swimming area is monitored after a storm: t (hr)                     4           8         12        16    20 24 c (CFU/100 mL) 1600     1320   1000     890 650 560 The time is measured in hours following the end of the storm and the unit CFU is a .colony forming unit.. Use this data to estimate (a)...
Matlab Design a FIR filter directly using fir1 function in matlab with parameter M = 50....
Matlab Design a FIR filter directly using fir1 function in matlab with parameter M = 50. Design FIR filters with different M = 5, 10, 50, 100, 500 and plot their frequency responses H(e j?) on the same figure.
The system function H5(s) represents a 1 rad/sec fifth-order normalized Butterworth filter. a) Give H5(s) in...
The system function H5(s) represents a 1 rad/sec fifth-order normalized Butterworth filter. a) Give H5(s) in both the polynomial and quadrature factored forms b) Repeat (a) for Chebyshev type I filter with ϵ =0.7647831.
Please use MATLAB. Write a program to plot the piecewise function using IF statements and a...
Please use MATLAB. Write a program to plot the piecewise function using IF statements and a FOR loop in MatLab. Use x as the input vector. Plot from -20<=x<=20, increment of 1.   y =   4 x + 10 ,             ? ≥ 9,                   y =      5? + 5,                   0 ≤ ? < 9,                    y =     ?2 + 6? + 8, ? < 0 Plot each segment of the fn with different shaped points and a different color, for...
ẍ+ 10ẋ + 50x = 2u̇ + 4u (a) Find the system’s transfer function (b) Plot...
ẍ+ 10ẋ + 50x = 2u̇ + 4u (a) Find the system’s transfer function (b) Plot poles and zeros on the s-plane (c) Provide the system’s time response from the poles of the transfer function (d) Is the system stable? Why or why not? (e) What type of system is it? (undamped, over damped, critically damped, underdamped, etc.?)
Create a 6th order Butterworth filter. Then change capacitor values and notice how the design specifications...
Create a 6th order Butterworth filter. Then change capacitor values and notice how the design specifications change. Create a plot where there is an ideal high performance filter (exact capacitor values) compared to a filter where low tolerance capacitors are used (the value of the capacitor drifts).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT