In: Math
A simple random sample of 400 individuals provides 100 Yes responses.
a. What is the point estimate of the proportion of the population that would provide Yes responses? (to 2 decimals)
later use p-- rounded to 2 decimal places
b. What is your estimate of the standard of error of the proportion? ( to 4 decimals)
c. Compute the 95% confidence interval for the population proportion. (to 4 decimals)
MUST INCLUDE:
The knowns
Graphs
Formulas
Steps to Solve
Box the Answer
Solution:
Given( Known's) :
Sample Size = n = 400
x = Number of individuals provides Yes responses = 100
Part a) the point estimate of the proportion of the population that would provide Yes responses:
Formula:
Thus point estimate of population proportion is:
Part b) An estimate of the standard of error of the proportion:
Formula:
Part c) Compute the 95% confidence interval for the population proportion.
Formula:
where
We need to find zc value for c=95% confidence level.
Find Area = ( 1 + c ) / 2 = ( 1 + 0.95) /2 = 1.95 / 2 = 0.9750
Look in z table for Area = 0.9750 or its closest area and find z value.
Area = 0.9750 corresponds to 1.9 and 0.06 , thus z critical value = 1.96
That is : Zc = 1.96
Thus
Thus