Question

In: Statistics and Probability

For each sample, do a test for zero correlation. a. r = +0.50, n = 15,...

For each sample, do a test for zero correlation.
a. r = +0.50, n = 15, α = 0.05, two-tailed test
b. r = –0.35, n = 30, α = 0.10, two-tailed test
c. r = +0.64, n = 5, α = 0.05, right-tailed test
d. r = –0.31, n = 50, α = 0.01, left-tailed test
(a) What hypotheses are being tested for Sample A?
a. H0: ρ = 0 versus H1: ρ ≠ 0.
b. H0: ρ ≥ 0 versus H1: ρ < 0.
c. H0: ρ ≤ 0 versus H1: ρ > 0.
a
b
c
(b)

Perform the t test and report your decision. (Round tcalc answers to 3 decimal places and p-values to 4. Negative values should be indicated by a minus sign.)

Sample tcalctcalc p−valuep-value Decision
a            (Click to select)RejectFail to reject H0H0
b            (Click to select)Fail to rejectReject H0H0
c               (Click to select)Fail to rejectReject H0H0
d           (Click to select)RejectFail to reject H0H0

Solutions

Expert Solution


Related Solutions

(a) Suppose n = 6 and the sample correlation coefficient is r = 0.888. Is r...
(a) Suppose n = 6 and the sample correlation coefficient is r = 0.888. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) t = critical t = Conclusion: Yes, the correlation coefficient ? is significantly different from 0 at the 0.01 level of significance. No, the correlation coefficient ? is not significantly different from 0 at the 0.01 level of significance.    (b) Suppose n = 10...
(a) Suppose n = 6 and the sample correlation coefficient is r = 0.882. Is r...
(a) Suppose n = 6 and the sample correlation coefficient is r = 0.882. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) t = critical t = Conclusion: Yes, the correlation coefficient ρ is significantly different from 0 at the 0.01 level of significance. No, the correlation coefficient ρ is not significantly different from 0 at the 0.01 level of significance.      (b) Suppose n = 10 and...
In a two-tailed test for correlation at α = .05, a sample correlation coefficient r =...
In a two-tailed test for correlation at α = .05, a sample correlation coefficient r = 0.42 with n = 25 is significantly different than zero. True or False
1) (a) Suppose n = 6 and the sample correlation coefficient is r = 0.874. Is...
1) (a) Suppose n = 6 and the sample correlation coefficient is r = 0.874. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) t = critical t = Conclusion: Yes, the correlation coefficient ρ is significantly different from 0 at the 0.01 level of significance.No, the correlation coefficient ρ is not significantly different from 0 at the 0.01 level of significance.     (b) Suppose n = 10 and...
11.4#10 (a) Suppose n = 6 and the sample correlation coefficient is r = 0.906. Is...
11.4#10 (a) Suppose n = 6 and the sample correlation coefficient is r = 0.906. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) t = critical t = Conclusion: Yes, the correlation coefficient ? is significantly different from 0 at the 0.01 level of significance.No, the correlation coefficient ? is not significantly different from 0 at the 0.01 level of significance.     (b) Suppose n = 10 and...
Given a linear correlation coefficient r = 0.476, a sample size n = 20, and a...
Given a linear correlation coefficient r = 0.476, a sample size n = 20, and a significance level of α = 0.05, use Table A-6 to determine the critical value of r and state if the given r represents a significant linear correlation. Would your answer change if the significance level was α = 0.01?
Given the linear correlation coefficient r and the sample size n, determine the critical values of...
Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents a significant linear correlation. Use a significance level of 0.05. r = 0.353, n = 15 A. Critical values: r = ±0.532, no significant linear correlation B. Critical values: r = ±0.514, significant linear correlation C. Critical values: r = ±0.514, no significant linear correlation D. Critical values: r =...
Given the linear correlation coefficient r and the sample size n, determine the critical values of...
Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents a significant linear correlation. Use a significance level of 0.05. r = 0.127, n = 15
(c) Compute the sample correlation coefficient r for each of the following data sets and show...
(c) Compute the sample correlation coefficient r for each of the following data sets and show that r is the same for both. (Use 3 decimal places.) (i) x 6 1 9 y 4 2 5 (ii)x 4 2 5 y6 1 9
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r,...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r, if we exchange the symbols x and y, do we get a different result or do we get the same (equivalent) result? Explain your answer. The result is the same because the formula is dependent on the symbols. The result is different because the formula is not dependent on the symbols. The result is the same because the formula is not dependent on the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT