In: Other
Propane gas at 1 bar and 35°C is compressed to a final state of 135 bar and 195°C. Estimate the molar volume of the propane in the final state and the enthalpy and entropy changes for the process. In its initial state, propane may be assumed an ideal gas.
Calculate the reduced properties of propane
Reduced temperature = given temperature /critical temperature
Tr = T/Tc
= (195+273.15)/369.8
= 1.266
Similarly reduced pressure
Pr = P/Pc
= 135/42.48 = 3.178
Accentric factor w = 0.152
Lee Kesler equation
At the calculated reduced properties
Z0 = 0.6141
Z1 = 0.1636
Z = Z0 + wZ1
= 0.6141 + 0.152*0.1636
= 0.639
Molar volume
V = ZRT/P
= 0.639*83.126 cm3-bar/mol·K*(195+273.15)K/135 bar
= 184.2 cm3/mol
Calculate the enthalpy at critical temperature
HR0 = - 2.496 RTc
= - 2.496*8.314*369.8 = - 7.674 x 10^3 J/mol
HR1 = - 0.586 RTc
= - 0.586 x 8.314 x 369.8 = - 1.802 x 10^3 J/mol
HR = HR0 + w*HR1
= - 7.674 x 10^3 + 0.152 * (- 1.802 x 10^3)
= - 7.948 x 10^3 J/mol
Enthalpy change
H = HR + R Cp dT
H = HR + R (1.213 + 28.785*10^-3 T - 8.824*10^-6 T^2)dT
H = - 7.948 x 10^3 + 8.314 (1.213 + 28.785*10^-3 T - 8.824*10^-6 T^2)dT
H = 6734.9 J/mol
Calculate the entropy
SR0 = - 1.463 R
= - 1.463*8.314 = - 12.163 J/mol-K
SR1 = - 0.717 R
= - 0.717 x 8.314 = - 5.961 J/mol-K
SR = SR0 + w*SR1
= - 12.163 + 0.152 * (- 5.961)
= - 13.069 J/mol-K
Entropy change
S = R (1.213 + 28.785*10^-3 T - 8.824*10^-6 T^2)dT - ln (P/P0) + SR
S = 8.314 (1.213 + 28.785*10^-3 T - 8.824*10^-6 T^2)dT + ln (135/1) - 13.069
S = - 15.9 J/mol-K