Question

In: Chemistry

A standard FAS solution is prepared by dissolving 0.1221 g of FAS (uncorrected mass) in water...

A standard FAS solution is prepared by dissolving 0.1221 g of FAS (uncorrected mass) in water in an amber bottle. The dry weight of the capped bottle is 256.77 g; the total weight of the bottle plus standard FAS solution is 750.13 g. Calculate the concentration of this solution in mg Fe/g soln. (Note that FAS has a density of 1.86 g/mL and contains 14.24087% Fe.) Then, a calibration standard test solution is made by dispensing 3.8514 g of the standard FAS solution into a 100.0 mL volumetric flask. It is buffered to pH 3.5, reduced with H2Q, complexed with phen, and diluted to the mark. Calculate the Fe concentration of this test solution in mg/L.

[Standard FAS solution: 0.0352617 mg Fe/g soln]

[Calibration standard test solution: 1.35806 mg Fe/L]

Please show how to get to the answers shown above.

Solutions

Expert Solution

Following is the Solution and calculation of the Part -(1) of the problem.

Part-(1): Q: " Calculate the concentration of this solution in mg Fe/ g soln. "

Calculated Answer:

Conc. of the Solution = 0.0352 mg Fe / g soln.

It has been calculated and proven that the given answer is correct. Following is the calculation in image format:


Related Solutions

A standard iodate solution is prepared at 22.0 °C by dissolving 0.9123 g (uncorrected mass) of...
A standard iodate solution is prepared at 22.0 °C by dissolving 0.9123 g (uncorrected mass) of KIO3 with deionized water in a 499.92 mL volumetric flask. To standardize the Na2S2O3 solution, a 10.005 mL aliquot of the KIO3 solution is acidified, treated with excess KI, and titrated with Na2S2O3, requiring 22.05 mL to reach the end point. Finally, a 10.005 mL aliquot of unknown Cu solution is reduced with excess KI. The liberated iodine requires 31.46 mL of Na2S2O3 solution...
A standard iodate solution is prepared at 22.0 °C by dissolving 0.9123 g (uncorrected mass) of...
A standard iodate solution is prepared at 22.0 °C by dissolving 0.9123 g (uncorrected mass) of KIO3 with deionized water in a 499.92 mL volumetric flask. To standardize the Na2S2O3 solution, a 10.005 mL aliquot of the KIO3 solution is acidified, treated with excess KI, and titrated with Na2S2O3, requiring 22.05 mL to reach the end point. Finally, a 10.005 mL aliquot of unknown Cu solution is reduced with excess KI. The liberated iodine requires 31.46 mL of Na2S2O3 solution...
An EDTA standard was made at 22.5 °C by dissolving 0.6206 g (uncorrected mass) of Na2H2EDTA·2H2O...
An EDTA standard was made at 22.5 °C by dissolving 0.6206 g (uncorrected mass) of Na2H2EDTA·2H2O in a 499.859 mL volumetric flask. Several 9.9873 mL aliquots of unknown were titrated for total divalent metal ions, and required an average of 23.197 mL of EDTA solution to reach the end point. After precipitation of Mg2+ from several additional 9.9873 mL aliquots of unknown, an average of 15.660 mL of titrant was required to reach the end point. All blanks were zero....
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is The mole fraction of Cl- in this solution is __________ M.
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is 1.05 g/mL. The concentration of CaCl2 in this solution is M
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water....
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water. The final volume of the solution is 378 mL . For this solution, calculate each of the following. molarity molality percent by mass mole fraction mole percent
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part A: Calculate the mole fraction of KCl in the solution. Part B: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part C: Calculate the molality of KCl in the solution.
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part A: Calculate the mass percent of KCl in the solution. Part B: Calculate the mole fraction of the ionic species KCl in the solution. Part C: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part D: Calculate the molality of KCl in the solution.
A solution was prepared by dissolving 39.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 39.0 g of KCl in 225 g of water. Part A: Calculate the mole fraction of the ionic species KCl in the solution. Express the concentration numerically as a mole fraction in decimal form. Note: The answer is not 0.0419.. Part B: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Express your answer with the appropriate units. Part C: Calculate the molality of KCl...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT