Question

In: Math

1. Weakly earnings on a certain import venture are approximately normally distributed with a known mean...

1. Weakly earnings on a certain import venture are approximately normally distributed with a known mean of $487 and unknown standard deviation. If the proportion of earnings over $517 is 27%, find the standard deviation. Answer only up to two digits after decimal.

2.X is a normal random variable with mean μ and standard deviation σ. Then P( μ− 1.4 σ ≤ X ≤ μ+ 2.2 σ) =? Answer to 4 decimal places.

3.Suppose X is a Binomial random variable with n = 32 and p = 0.41.

Use binomial distribution to find the exact value of   P(X < 11). [Answer to 4 decimal places]

错误. Tries 1/5 以前的尝试

What are the appropriate values of mean and standard deviation of the normal distribution used to approximate the binomial probability?
μ = 13.12, and σ = 0.087.
μ = 13.12, and σ = 2.782.
μ = 13.12, and σ = 7.741.
μ = 32, and σ = 0.41.

Tries 0/3

Using normal approximation, compute the approximate value of   P(X < 11). [Answer to 4 decimal places]

Tries 0/5

Is the n sufficiently large for normal approximation?
Yes, because n is at least 30.
No, because μ±3σ, is contained in the interval (0, 32).
Yes, because μ±3σ, is inside the interval (0, 32).
No, because np < 15

4. Usually about 65% of the patrons of a restaurant order burgers. A restaurateur anticipates serving about 155 people on Friday. Let X be the numbers of burgers ordered on Friday. Then X is binomially distributed with parameters n = 155 and p = 0.65.

What is the expected number of burgers (μX) ordered on Friday? [Answer up to 2 digits after decimal]

Tries 0/5

Find the standard deviation of XX)? [Answer up to 3 digits after decimal]

Tries 0/5

If the restaurant ordered meats to prepare about 109 burgers for Friday evening. Use normal approximation of binomial distribution to find the probability that on Friday evening some orders for burgers from the patron cannot be met. [Answer up to 4 digits after decimal]

Tries 0/5

How many burgers the restaurant should prepare beforehand so that the chance that an order of burger cannot be fulfilled is at most 0.05? i.e. Find a such that P(X > a) = 0.05 using normal approximation of binomial distribution.

Solutions

Expert Solution

Only ask 1 question per post.


Related Solutions

Weakly earnings on a certain import venture are approximately normally distributed with a known mean of...
Weakly earnings on a certain import venture are approximately normally distributed with a known mean of $423 and unknown standard deviation. If the proportion of earnings over $452 is 28%, find the standard deviation. Answer only up to two digits after decimal. ( ) X is a normal random variable with mean μ and standard deviation σ. Then P( μ− 1.7 σ ≤ X ≤ μ+ 2.1 σ) =? Answer to 4 decimal places. ( ) If Z is a...
The lifetimes of a certain electronic component are known to be normally distributed with a mean...
The lifetimes of a certain electronic component are known to be normally distributed with a mean of 1,400 hours and a standard deviation of 600 hours. For a random sample of 25 components the probability is 0.6915 that the sample mean lifetime is less than how many hours? A)1345 B)1460 C)1804 D)1790
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean equals 136 days and standard deviation equals 12 days. What is the probability a random sample of size 19 will have a mean gestation period within 8 days of the​ mean
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu equals μ=197 daysand standard deviation sigma equals sσ=14 days. Complete parts​ (a) through​ (f) below. ​(a) What is the probability that a randomly selected pregnancy lasts less than 192 ​days? The probability that a randomly selected pregnancy lasts less than 192 days is approximately 0.3604 ​(Round to four decimal places as​ needed.) Interpret this probability. Select the correct choice below and fill in...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu equals 248 days and standard deviation sigma equals 24 days. Complete parts​ (a) through​ (f) below. ​(a) What is the probability that a randomly selected pregnancy lasts less than 239 ​days? The probability that a randomly selected pregnancy lasts less than 239 days is approximately nothing. ​(Round to four decimal places as​ needed.) Interpret this probability. Select the correct choice below and fill...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean=...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean= 169days and standard deviation=14 days. complete parts (a) through (f) below. (a) What is the probability that a randomly selected pregnancy lasts less than 164 days? The probability that a randomly selected pregnancy lasts less than 164 days is approximately _. (Round to four decimal places as needed.) Interpret this probability. Select the correct choice below and fill in the answer box within your...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean μ=253 days and standard deviation σ=17 days. Complete parts (a) through (f) below. (a) What is the probability that a randomly selected pregnancy lasts less than 247 days? The probability that a randomly selected pregnancy lasts less than 247 days is approximately: ______ (Round to four decimal places as needed.) Interpret this probability. Select the correct choice below and fill in the answer box...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu equals 194 days and standard deviation sigma equals 13 days. Complete parts​ (a) through​ (f) below. ​(a) What is the probability that a randomly selected pregnancy lasts less than 190 ​days? The probability that a randomly selected pregnancy lasts less than 190 days is approximately . 3783. ​(Round to four decimal places as​ needed.) Interpret this probability. Select the correct choice below and...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu = 283 days and standard deviation sigma = 29 days. (a) What is the probability that a randomly selected pregnancy lasts less than 273 days? The probability that a randomly selected pregnancy lasts less than 273 days is approximately (Round to four decimal places as needed.) (b) What is the probability that a random sample of 11 pregnancies has a mean gestation period...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean...
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu equals 285 days and standard deviation sigma equals 28 days. What is the probability a random sample of size 20 will have a mean gestation period within 10 days of the​ mean? The probability that a random sample of size 20 will have a mean gestation period within 10 days of the mean is _____ ​(Round to four decimal places as​ needed.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT