Question

In: Chemistry

The zinc content of a 1.03 g ore sample was determined by dissolving the ore in HCl,


The zinc content of a 1.03 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc. The excess H

The amount of I (aq) in a solution can be determined by titration with a solution containing a known concentration of s.O (aq

The zinc content of a 1.03 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc. The excess HCl is then neutralized with with NaOH. The reaction of HCI with Zn is shown. 

Zn(s)+2 HCl(aq) → ZnCl2 (aq) +H2 (g) 

The ore was dissolved in 150 mL of 0.600 M HCI, and the resulting solution was diluted to a total volume of 300 mL. A 20.0 mL aliquot of the final solution required 8.22 mL of 0.539 M NaOH to neutralize the excess HCI. What is the mass percentage (%w/w) of Zn in the ore sample? 


The amount of I (aq) in a solution can be determined by titration with a solution containing a known concentration of S2O32- (aq) (thiosulfate ion). The determination is based on the net ionic equation 

2S2O32- (aq)+I3-(aq) -> S4O62-(aq) +3I- (aq) 

Given that it requires 35.2 mL of 0.240 M Na2S2O3(aq) to titrate a 15.0 mL sample of I3- (aq), calculate the molarity of  I3- (aq) in the solution. 

Solutions

Expert Solution


Related Solutions

The zinc content of a 1.64 g ore sample was determined by dissolving the ore in...
The zinc content of a 1.64 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc, and then neutralizing excess HCl with NaOH. The reaction of HCl with Zn is shown below. The ore was dissolved in 150 mL of 0.600 M HCl, and the resulting solution was diluted to a total volume of 300 mL. A 20.0 mL aliquot of the final solution required 8.71 mL of 0.510 M NaOH for the HCl...
The zinc content of a 1.64 g ore sample was determined by dissolving the ore in...
The zinc content of a 1.64 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc, and then neutralizing excess HCl with NaOH. The ore was dissolved in 150 mL of 0.600 M HCl, and the resulting solution was diluted to a total volume of 300 mL. A 20.0 mL aliquot of the final solution required 8.71 mL of 0.510 M NaOH for the HCl present to be neutralized. What is the mass percentage...
The zinc content of a 1.40 g ore sample was determined by dissolving the ore in...
The zinc content of a 1.40 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc, and then neutralizing excess HCl with NaOH. The reaction of HCl with Zn is shown below. Zn (s) + 2HCl (aq) --> ZnCl2 (aq) + H2 (g) The ore was dissolved in 150 mL of 0.600 M HCl, and the resulting solution was diluted to a total volume of 300 mL. A 20.0 mL aliquot of the final...
The zinc content of a 1.17 g ore sample was determined by dissolving the ore in...
The zinc content of a 1.17 g ore sample was determined by dissolving the ore in HCl, which reacts with the zinc, and then neutralizing excess HCl with NaOH. The reaction of HCl with Zn is shown below. Zn(s) + 2HCl(aq) ---> ZnCl2(aq) + H2(g) The ore was dissolved in 150 mL of 0.600 M HCl, and the resulting solution was diluted to a total volume of 300 mL. A 20.0 mL aliquot of the final solution required 8.50 mL...
After dissolving in 50.0 mL of good water, the zinc in a 0.422 g sample of...
After dissolving in 50.0 mL of good water, the zinc in a 0.422 g sample of foot powder was titrated at a pH=12.0 with 26.67 mL of a 0.01222 M EDTA solution. Calculate the % Zn in this sample and the ppm of Zn in the original foot powder sample.
a) A standard ZnCl2 solution is prepared by dissolving 0.6328 g of Zn in an HCl...
a) A standard ZnCl2 solution is prepared by dissolving 0.6328 g of Zn in an HCl solution and diluting to volume in a 1.00 L volumetric flask. An EDTA solution is standardized by titrating a 10.00 mL aliquot of the ZnCl2 solution, which requires 10.84 mL of EDTA solution to reach the end point. Determine the concentration of the EDTA solution. b) A 1.4927 g sample of powdered milk is dissolved and the solution titrated with the EDTA solution prepared...
--  A 1.0000 g sample of zinc metal is added to a solution containing 1.2500 g of...
--  A 1.0000 g sample of zinc metal is added to a solution containing 1.2500 g of an unknown compound of bismuth and chlorine. The reaction results in the formation of zinc chloride and metallic bismuth. When the reaction is complete, unreacted zinc remains, and this unreacted zinc is consumed by reaction with HCl. After washing and drying, the mass of bismuth metal recovered is 0.6763g. Q. Write a balanced chemical equation for the reaction of zinc with the original unknown...
Q.-- A 1.0000 g sample of zinc metal is added to a solution containing 1.2500 g...
Q.-- A 1.0000 g sample of zinc metal is added to a solution containing 1.2500 g of an unknown compound of bismuth and chlorine. The reaction results in the formation of zinc chloride and metallic bismuth. When the reaction is complete, unreacted zinc remains, and this unreacted zinc is consumed by reaction with HCl. After washing and drying, the mass of bismuth metal recovered is 0.6763g -- Calculate the experimental % of bismuth in the original unknown compound -- If...
A 2.47×10-1 g sample of HCl and a 8.82 g sample of O2 react in a...
A 2.47×10-1 g sample of HCl and a 8.82 g sample of O2 react in a closed 2.25 L container at 487 K, according to the following balanced chemical equation: 4HCl(g) + O2(g) → 2H2O(l) + 2Cl2(g) Calculate the PCl2 (in atm) in the container after the reaction has gone to completion.
The synthesis of zinc iodide was performed using 1.0582 g of zinc and 2.6987 g of...
The synthesis of zinc iodide was performed using 1.0582 g of zinc and 2.6987 g of iodine. Determine the limiting reactant and calculate the theoretical yield of zinc iodide in grams.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT