In: Computer Science
Given a sorted array with lot of duplicates, write a problem to search specific element m. If it’s included in the A, return its minimal index, otherwise return -1. For example A = {0, 0, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4}, if we search 4, you program should return 8. You are only allowed to use binary search. Linear search is not allowed here.
class BinarySearch {
// Returns index of x if it is present in arr[l..
// r], else return -1
public static int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r - l) / 2;
// If the element is present at the mid index
if (arr[mid] == x)
return mid;
// If element is smaller than mid, then it can only be present in left subarray
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
// Else the element can only be prese in right subarray
return binarySearch(arr, mid + 1, r, x);
}
//element is not present
return -1;
}
// modified method to search element in duplicate array
public static int[] binarySearchDuplicate(int[] array, int l, int r, int n){
int firstMatch = binarySearch(array, 0, array.length - 1, n);
int[] resultArray = { -1, -1 };
// element not found
if (firstMatch == -1) {
return resultArray;
}
int leftMost = firstMatch;
int rightMost = firstMatch;
for (int result = binarySearch(array, 0, leftMost - 1, n); result != -1;) {
leftMost = result;
result = binarySearch(array, 0, leftMost - 1, n);
}
for (int result = binarySearch(array, rightMost + 1, array.length - 1, n); result != -1;) {
rightMost = result;
result = binarySearch(array, rightMost + 1, array.length - 1, n);
}
resultArray[0] = leftMost;
resultArray[1] = rightMost;
// return the array that has all indices where number can be found
return resultArray;
}
// Driver method to test above
public static void main(String args[])
{
int arr[] = {0, 0, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4};
int n = arr.length;
int x = 3;
int[] result = binarySearchDuplicate(arr, 0, n - 1, x);
if (result[0] == -1)
System.out.println("Element not present");
else
System.out.println("Element found at index " + result[0]);
}
}

FOR HELP PLEASE COMMENT.
THANK YOU