Question

In: Math

Prove: (?) ???=Σ ( ?−?̅  )2 =Σ ?2−[(Σ ?2)/n] (Sum Squares X) (?) ???=Σ( ?−?̅ )2=Σ ?2−[(Σ...

Prove:
(?) ???=Σ ( ?−?̅  )2 =Σ ?2−[(Σ ?2)/n] (Sum Squares X)


(?) ???=Σ( ?−?̅ )2=Σ ?2−[(Σ ?2)/?] (Sum Squares Y)


(?) ??? =Σ( ?−?̅ ) ( ?−?̅ )=Σ ??−[(Σ?)(Σ?)?] (Sum Products X,Y)

Solutions

Expert Solution

Solution:

Part a)

where

which can be rewritten as:

......equation i)

Thus solving square term, we get:

From equation i) , we can write and sum of

Since is constant.

thus we get:

. Hence Proved.

Part b)

where

which can be rewritten as:

......equation ii)

Thus solving square term, we get:

From equation ii) , we can write and sum of

Since is constant.

thus we get:

. Hence Proved.

Part c)

Hence Proved.


Related Solutions

For each given integer n, determine if n is a sum of two squares. (You do...
For each given integer n, determine if n is a sum of two squares. (You do not have to find the squares.) (a) n = 19 (b) n = 45 (c) n = 99 (d) n = 999 (e) n = 1000
For each given integer n, determine if n is a sum of two squares. (You do...
For each given integer n, determine if n is a sum of two squares. (You do not have to find the squares.) (a)n= 19 (b)n= 45 (c)n= 99 (d)n= 999 (e)n=1000
Consider the following recursive algorithm for computing the sum of the first n squares: S(n) =...
Consider the following recursive algorithm for computing the sum of the first n squares: S(n) = 12 +22 +32 +...+n2 . Algorithm S(n) //Input: A positive integer n //Output: The sum of the first n squares if n = 1 return 1 else return S(n − 1) + n* n a. Set up and solve a recurrence relation for the number of times the algorithm’s basic operation is executed. b. How does this algorithm compare with the straightforward non-recursive algorithm...
A special chessboard is 2 squares wide and n squares long. Using n dominoes that are...
A special chessboard is 2 squares wide and n squares long. Using n dominoes that are 1 square by 2 squares, there are many ways to completely cover this chessboard with no overlap. How many are there? Prove your answer.
1)With​ two-way ANOVA, the total sum of squares is portioned in the sum of squares for​...
1)With​ two-way ANOVA, the total sum of squares is portioned in the sum of squares for​ _______. 2) A​ _______ represents the number of data values assigned to each cell in a​ two-way ANOVA table. a)cell b) Block c)replication D)level 3.) True or false: In a​ two-way ANOVA​ procedure, the results of the hypothesis test for Factor A and Factor B are only reliable when the hypothesis test for the interaction of Factors A and B is statistically insignificant. 4.)Randomized...
Let τ (n) denote the number of positive divisors of n and σ(n) denote the sum...
Let τ (n) denote the number of positive divisors of n and σ(n) denote the sum of the positive divisors of n (as in the notes). (a) Evaluate τ (1500) and σ(8!). (b) Verify that τ (n) = τ (n + 1) = τ (n + 2) = τ (n + 3) holds for n = 3655 and 4503. (c) When n = 14, n = 206 and n = 957, show that σ(n) = σ(n + 1).
1) Prove the conjectures a) The sum of the measures of the n interior angles of...
1) Prove the conjectures a) The sum of the measures of the n interior angles of any n-gon is 180 degrees(n-2). b) For any polygon, the sum of the measures of a set of exterior angles is 360 degrees.
H0:σ^2 (1) ≤σ^2 (2), HA:σ^2 (1)>σ^2 (2) n(1) = 15, s^2 (1) = 1000; n(2) =...
H0:σ^2 (1) ≤σ^2 (2), HA:σ^2 (1)>σ^2 (2) n(1) = 15, s^2 (1) = 1000; n(2) = 27, s^2 (2) = 689 α=0.05 Reject or do not reject H0?
Numerical proof of Var(X + Y ) = σ 2 X + σ 2 Y +...
Numerical proof of Var(X + Y ) = σ 2 X + σ 2 Y + 2Cov(X, Y ): ***Please use R commands, that is where my confusion lies*** 2.1 State how you create a dependent pair of variables (X, Y), give Var(X), Var(Y ), Cov(X, Y ), and Var(X + Y ). 2.2 Choose a sample size n and generate (xi , yi), i = 1, . . . , n according to the (X,Y) distribution. Give the sample...
Let X ∼ Normal(0, σ^2 ). (a) Find the distribution of X^2/σ^2 . (Hint: It is...
Let X ∼ Normal(0, σ^2 ). (a) Find the distribution of X^2/σ^2 . (Hint: It is a pivot quantity.) (b) Give an interval (L, U), where U and L are based on X, such that P(L < σ^2 < U) = 0.95. (c) Give an upper bound U based on X such that P(σ^2 < U) = 0.95. (d) Give a lower bound L based on X such that P(L < σ^2 ) = 0.95
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT