In: Math
In probability theory, a conditional probability measures the probability of an event given another event has occurred. The conditional probability of A given B, denoted by P(A|B), is defined by P(A|B) = P(A ∩ B) P(B) , provided P(B) > 0. Show that the conditional probability defined above is a probability set function. That is show that a) P(A|B) ≥ 0 [4 Marks] b) P(S|B) = 1. [4 Marks] c) P( S Ai |B) = PP(Ai |B) [4 Marks]