Question

In: Chemistry

1. Calculate the adiabatic flame temperature for the following mixtures initially at 298 K: stoichiometric butane-air...

1. Calculate the adiabatic flame temperature for the following mixtures initially at 298 K: stoichiometric butane-air mixture, stoichiometric butane-oxygen mixture, 2.0% (by volume) of butane in air. Use enthalpies of formation and heat capacities from the NIST Chemistry WebBook, which can be found at http://webbook.nist.gov/chemistry/.

2) Repeat the adiabatic flame temperature calculation without the restriction on the possible products using an online version of the CEA calculator developed by NASA and located at http://www.grc.nasa.gov/WWW/CEAWeb/ceaHome.htm. Compare the results of the two calculations and explain possible differences. Print and attach your simulation results please.

Solutions

Expert Solution

1)


Related Solutions

Calculate the adiabatic flame temperature for the following mixtures initially at 298 K: stoichiometric butane-air mixture,...
Calculate the adiabatic flame temperature for the following mixtures initially at 298 K: stoichiometric butane-air mixture, stoichiometric butane-oxygen mixture, 2.0% (by volume) of butane in air. Calculate without the restriction on the possible products using an online version of the CEA calculator developed by NASA and located athttp://www.grc.nasa.gov/WWW/CEAWeb/ceaHome.htm. Compare the results of the two calculations and explain possible differences.
For a constant-volume stoichiometric propane-air mixture initially at 298K, determine the adiabatic flame temperature and final...
For a constant-volume stoichiometric propane-air mixture initially at 298K, determine the adiabatic flame temperature and final pressure assuming constant specific heats evaluated at 298K.
1 – Calculate the adiabatic flame temperature of propane combustion with 50% excess air. 2– Use...
1 – Calculate the adiabatic flame temperature of propane combustion with 50% excess air. 2– Use an online adiabatic flame calculator to calculate the adiabatic flame temperature of propane with air in increments of 0.1 equivalence ratio from 0.5 to 1.2. Plot your results and determine the point that the flame has the maximum T. Compare your results with that of Problem 1.
For ethanol liquid with 50% excess of air. Determine adiabatic flame temperature
For ethanol liquid with 50% excess of air. Determine adiabatic flame temperature
the adiabatic flame temperature (theoretical maximum temperature) of black coal in air is over 2000oC. If...
the adiabatic flame temperature (theoretical maximum temperature) of black coal in air is over 2000oC. If the ambient temperature is 20oC then the theoretical maximum efficiency of a coal fired power station is approximately 87%. Why then is the efficiency of even the best coal fired power stations less than 50%.
Please calculate the adiabatic flame temperature for methanol combustion for the following case : 12% CH3OH...
Please calculate the adiabatic flame temperature for methanol combustion for the following case : 12% CH3OH (g) in air at 1 atm when the maximum possible conversion of methanol is achieved. It is believed that CO is not formed during the combustion.
Find the adiabatic flame temperature for complete combustion with 130% theoretical air for pentane. (The pentane...
Find the adiabatic flame temperature for complete combustion with 130% theoretical air for pentane. (The pentane and air enter at standard reference conditions.)
When a hydrocarbon burns with 300% of theoretical air, is the adiabatic flame temperature higher than,...
When a hydrocarbon burns with 300% of theoretical air, is the adiabatic flame temperature higher than, lower than, or equal to the adiabatic flame temperature when it burns with 100% of theoretical air? Why? Note: You must correctly explain your reasoning to receive credit for this problem.
for which of the following mixtures will ag2so4(s) precipitate at 298 k
For which of the following mixtures will Ag2SO4(s) precipitate? 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.20 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.30 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.40 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.50 M AgNO3(aq)
1. A premixed stoichiometric methane-air flame has a laminar flame speed of 0.33 m/s and a...
1. A premixed stoichiometric methane-air flame has a laminar flame speed of 0.33 m/s and a temperature of 2200 K. The reactants are initially at 300 K and 1 atm. Find the velocity of the combustion products relative to the flame front and the pressure change across the flame. Assume that the reaction goes to completion and there is no dissociation. 2. Repeat Problem 1 for a premixed stoichiometric methanol-air flame. The flame speed is 0.48 m/s and the flame...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT