In: Statistics and Probability
Do larger universities tend to have more property crime? University crime statistics are affected by a variety of factors. The surrounding community, accessibility given to outside visitors, and many other factors influence crime rate. Let x be a variable that represents student enrollment (in thousands) on a university campus, and let y be a variable that represents the number of burglaries in a year on the university campus. A random sample of n = 8 universities in California gave the following information about enrollments and annual burglary incidents.
x | 12.3 | 28.4 | 24.5 | 14.3 | 7.5 | 27.7 | 16.2 | 20.1 |
y | 22 | 77 | 39 | 23 | 15 | 30 | 15 | 25 |
(a) Use a calculator to verify that Σx = 151.0,
Σx2 = 3252.58, Σy = 246,
Σy2 = 10438 and Σxy = 5430.8.
Compute r. (Round to 3 decimal places.)
(b) Compute the sample correlation coefficient r for each of the following data sets and show that r is the same for both. (Use 3 decimal places.)
(i) | x | 3 | 7 | 9 |
y | 1 | 2 | 5 |
(ii) | x | 1 | 2 | 5 |
y | 3 | 7 | 9 |
r | |
(i) | |
(ii) |
a)
S.No | X | Y | X12 | Y12 | XY |
1 | 12.3 | 22 | 151.29 | 484.0000 | 270.60 |
2 | 28.4 | 77 | 806.56 | 5929.0000 | 2186.80 |
3 | 24.5 | 39 | 600.25 | 1521.0000 | 955.50 |
4 | 14.3 | 23 | 204.49 | 529.0000 | 328.90 |
5 | 7.5 | 15 | 56.25 | 225.0000 | 112.50 |
6 | 27.7 | 30 | 767.29 | 900.0000 | 831.00 |
7 | 16.2 | 15 | 262.44 | 225.0000 | 243.00 |
8 | 20.1 | 25 | 404.01 | 625.0000 | 502.50 |
ΣX | 207.106 | ΣX2 | ΣY2 | ΣXY | |
total | 151.0 | 246.0000 | 3252.6 | 10438.00 | 5430.8 |
ΣX = | 151.000 |
ΣY= | 246.000 |
ΣX2 = | 3252.580 |
ΣY2 = | 10438.000 |
ΣXY = | 5430.800 |
sx=(√(Σx2-(Σx)2/n)/(n-1))= | 7.5825 | ||
sy=(√(Σy2-(Σy)2/n)/(n-1))= | 20.2608 | ||
Cov=sxy=(ΣXY-(ΣXΣY)/n)/(n-1)= | 112.5071 | ||
r=Cov/(Sx*Sy)= | 0.732 |
b)
i)
S.No | X | Y | (x-x̅)2 | (y-y̅)2 | (x-x̅)(y-y̅) |
1 | 3 | 1 | 11.1111 | 2.78 | 5.5556 |
2 | 7 | 2 | 0.4444 | 0.44 | -0.4444 |
3 | 9 | 5 | 7.1111 | 5.44 | 6.2222 |
Total | 19 | 8 | 18.6667 | 8.67 | 11.3333 |
Mean | 6.333 | 2.67 | SSX | SSY | SXY |
correlation coefficient r= | Sxy/(√Sxx*Syy) = | 0.891 |
ii)
S.No | X | Y | (x-x̅)2 | (y-y̅)2 | (x-x̅)(y-y̅) |
1 | 1 | 3 | 2.7778 | 11.11 | 5.5556 |
2 | 2 | 7 | 0.4444 | 0.44 | -0.4444 |
3 | 5 | 9 | 5.4444 | 7.11 | 6.2222 |
Total | 8 | 19 | 8.6667 | 18.67 | 11.3333 |
Mean | 2.667 | 6.33 | SSX | SSY | SXY |
correlation coefficient r= | Sxy/(√Sxx*Syy) = | 0.891 |