Question

In: Mechanical Engineering

A solar collector design consists of an inner tube enclosed concentrically in an outer tube that...

A solar collector design consists of an inner tube enclosed concentrically in an outer tube that is transparent to solar radiation. The tubes are thin walled with inner and outer diameters of 0.08 and 0.10 m, respectively. The annular space between the tubes is completely enclosed and filled with air at atmospheric pressure. Under operating conditions for which the inner and outer tube surface temperatures are 80 and 30°C, respectively, what is the rate of convective heat loss per meter of tube length across the air space?

Solutions

Expert Solution


Related Solutions

A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is...
A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is a = 0.1 m and the inner radius of the outer shell is b = 0.2 m. a. What is the capacitance, C, of this capacitor? b. Suppose the maximum possible electric field at the outer surface of the inner shell before the air starts to ionize E max(r=a) = 3.0*10^6 V/m . What is the maximum possible charge on the inner capacitor? c....
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part E Calculate the magnitude the electric field in terms of ? and the distance r from the axis of the tube for r>b. Express your answer...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +?, where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part A Calculate the electric field in terms of ? and the distance r from the axis of the tube for r<a. Part B Calculate the electric...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part B Find the direction of the electric field in terms of ?and the distance r from the axis of the tube forr<a. Find the direction of...
A very long conductive tube has inner radius a and outer radius b. It carries charge...
A very long conductive tube has inner radius a and outer radius b. It carries charge per unit length +alpha (C/m). A line of charge with linear charge density +alpha lies along the axis of the tube. Calculate the electric field’s magnitude in terms of alpha and the distance r from the axis of the tube in each of the regions: r<a, a<r<b, r>b.
Solar Collector Field: This design uses a series of Fresnel lenses and concave mirrors to concentrate...
Solar Collector Field: This design uses a series of Fresnel lenses and concave mirrors to concentrate solar radiation onto a boiler mounted on a tower. The boiler then produces steam, which then is used to generate electricity. This system is expected to yield a power of 3.3 MW and will cost $91 million initially with first-year operating costs of $3 million, growing 350,000 annually. It will produce electricity worth $9.7 million the first year; this revenue stream is expected to...
Give an example of an inner and outer class. (Java)
Give an example of an inner and outer class. (Java)
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is...
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is at T1, the outer surface at T2, T1 > T2. Assume heat transfer between the surfaces by conduction, with a variable conductivity, k = a + bT, develop an expression for the temperature in the material of the annulus.
A solar collector installed on the roof of a SoCal home is used to heat water...
A solar collector installed on the roof of a SoCal home is used to heat water flowing through ducts attached at the back of the collector. The absorbing surface has an area of 2 m2 with an emissivity of 0.9. The surface temperature of the absorber is 35 °C, and solar radiation is incident on the absorber at 450 W/m2. Temperature of surrounding air is 22 °C. Heat transfer coefficient at the absorber surface is 5 W/m2·K. If water is...
A photovoltaic solar collector with an area of 2 m2 is tracking the sun for 8...
A photovoltaic solar collector with an area of 2 m2 is tracking the sun for 8 hours on a sunny day. Assume that, the solar flux on the collector is constant through the day as 1000W/m2. PV Solar collector properties are: FF: %75, Efficiency: %18.2 V (MPP, nominal) = 28 V V (Open Circuit) = 32 V a) What is the total amount of energy converted to electricity? b) Assume a reasonable price for the cost of electricity and then...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT