In: Finance
Suppose there is a Treasury bond with exactly 15 years left to maturity, a 5% coupon, par of 100, and a 2.6% yield-to-maturity? (Recall that Treasury notes pay semi-annual coupons.) What is the modified duration of this bond?
A 3.41
B 7.99
C 11.17
D 14.23
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =15x2 |
Bond Price =∑ [(5*100/200)/(1 + 2.6/200)^k] + 100/(1 + 2.6/200)^15x2 |
k=1 |
Bond Price = 129.65 |
Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc |
0 | ($129.65) | =(1+YTM/number of coupon payments in the year)^period | =cashflow/discounting factor | =PV cashflow*period |
1 | 2.50 | 1.01 | 2.47 | 2.47 |
2 | 2.50 | 1.03 | 2.44 | 4.87 |
3 | 2.50 | 1.04 | 2.40 | 7.21 |
4 | 2.50 | 1.05 | 2.37 | 9.50 |
5 | 2.50 | 1.07 | 2.34 | 11.72 |
6 | 2.50 | 1.08 | 2.31 | 13.88 |
7 | 2.50 | 1.09 | 2.28 | 15.99 |
8 | 2.50 | 1.11 | 2.25 | 18.04 |
9 | 2.50 | 1.12 | 2.23 | 20.03 |
10 | 2.50 | 1.14 | 2.20 | 21.97 |
11 | 2.50 | 1.15 | 2.17 | 23.86 |
12 | 2.50 | 1.17 | 2.14 | 25.69 |
13 | 2.50 | 1.18 | 2.11 | 27.48 |
14 | 2.50 | 1.20 | 2.09 | 29.21 |
15 | 2.50 | 1.21 | 2.06 | 30.90 |
16 | 2.50 | 1.23 | 2.03 | 32.53 |
17 | 2.50 | 1.25 | 2.01 | 34.12 |
18 | 2.50 | 1.26 | 1.98 | 35.67 |
19 | 2.50 | 1.28 | 1.96 | 37.16 |
20 | 2.50 | 1.29 | 1.93 | 38.62 |
21 | 2.50 | 1.31 | 1.91 | 40.03 |
22 | 2.50 | 1.33 | 1.88 | 41.40 |
23 | 2.50 | 1.35 | 1.86 | 42.72 |
24 | 2.50 | 1.36 | 1.83 | 44.01 |
25 | 2.50 | 1.38 | 1.81 | 45.25 |
26 | 2.50 | 1.40 | 1.79 | 46.46 |
27 | 2.50 | 1.42 | 1.76 | 47.63 |
28 | 2.50 | 1.44 | 1.74 | 48.76 |
29 | 2.50 | 1.45 | 1.72 | 49.85 |
30 | 102.50 | 1.47 | 69.57 | 2,087.19 |
Total | 2,934.19 |
Macaulay duration =(∑ Duration calc)/(bond price*number of coupon per year) |
=2934.19/(129.65*2) |
=11.315826 |
Modified duration = Macaulay duration/(1+YTM) |
=11.32/(1+0.026) |
=11.17 |