In: Computer Science
{∅,{∅},{b},{{b}},{{{b}}},{∅,b},{∅,{b}},{∅,{{b}}},{b,{b}},{b.{{b}}},{{b},{{b}}}, {∅,b,{b}},{∅,b,{{b}}},{∅,{b},{{b}}},{b,{b},{{b}}},{∅,b{b},{{b}}}}
is this a power set of a set?
It is known that a set S can be reffered as the power set of the other set s1 if and only if the given set s includes in it , all the subsets of the other set s1(original set).
So, According to this rule we can say that , Yes, the set S1 (let)= {∅,{∅},{b},{{b}},{{{b}}},{∅,b},{∅,{b}},{∅,{{b}}},{b,{b}},{b,{{b}}},{{b},{{b}}}, {∅,b,{b}},{∅,b,{{b}}},{∅,{b},{{b}}},{b,{b},{{b}}},{∅,b{b},{{b}}}} is a power set of the original set S = {∅, b , {b} , {{b}} }
Explanation :
Let S = {∅, b , {b} , {{b}} }.
and S1 = {∅,{∅},{b},{{b}},{{{b}}},{∅,b},{∅,{b}},{∅,{{b}}},{b,{b}},{b,{{b}}},{{b},{{b}}}, {∅,b,{b}},{∅,b,{{b}}},{∅,{b},{{b}}},{b,{b},{{b}}},{∅,b{b},{{b}}}}
so for s1 to be power set of s , the term of the set s1 with largest numbers of elements must be equal to s, Which holds true here. i.e
S = {∅, b , {b} , {{b}} } = largest subset of the set s1.
And s1 must contain all the subsets of the S.
now, let us find the subsets of the set = S = {∅, b , {b} , {{b}} } as follows :
(ii) {∅}
(iii) {b}
(iv) {{b}}
(v) {{{b}}}
(vi) {∅,b}
(vii) {∅,{b}}
(viii) {∅,{{b}}}
(ix) {b,{b}}
(x) {b,{{b}}}
(xi) {{b},{{b}}}
(xii) {∅,b,{b}}
(xiii) {∅,b,{{b}}}
(xiv) {∅,{b},{{b}}}
(xv) {b,{b},{{b}}}
(xvi) {∅,b,{b},{{b}}}
Hence we can conclude that the given set {∅,{∅},{b},{{b}},{{{b}}},{∅,b},{∅,{b}},{∅,{{b}}},{b,{b}},{b,{{b}}},{{b},{{b}}}, {∅,b,{b}},{∅,b,{{b}}},{∅,{b},{{b}}},{b,{b},{{b}}},{∅,b{b},{{b}}}} is the power set of the original set S = {∅, b , {b} , {{b}} }