Question

In: Statistics and Probability

Following are heights, in inches, for a sample of college basketball players. 70 75 72 86...

Following are heights, in inches, for a sample of college basketball players.

70 75 72 86 78 81 86 78 81 72 73 76 77 87 88 84 80 70 82 75 Find the sample standard deviation for the heights of the basketball players.

Solutions

Expert Solution

Solution:

Sample size n = 20

x x2
70 4900
75 5625
72 5184
86 7396
78 6084
81 6561
86 7396
78 6084
81 6561
72 5184
73 5329
76 5776
77 5929
87 7569
88 7744
84 7056
80 6400
70 4900
82 6724
75 5625
SUM 1571 124027

Sample variance s2 =

= [1/(20 - 1)][124027 - (15712/20) ]

= 32.89211

Now ,

sample standard deviation s = variance = 32.89211 = 5.735164

Sample standard deviation = 5.735164


Related Solutions

A randomly selected sample of college basketball players has the following heights in inches. 63, 62,...
A randomly selected sample of college basketball players has the following heights in inches. 63, 62, 71, 63, 63, 63, 69, 61, 68, 64, 62, 62, 65, 69, 69, 71, 66, 62, 63, 64, 66, 61, 63, 67, 65, 64, 63, 61, 68, 68, 67, 62. Compute a 93% confidence interval for the population mean height of college basketball players based on this sample and fill in the blanks appropriately.
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate a 99% confidence interval for the population mean height of these players with a 0.45 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number, do not include any decimals) Answer:
The population standard deviation for the height of college basketball players is 2.4 inches. If we...
The population standard deviation for the height of college basketball players is 2.4 inches. If we want to estimate 97% confidence interval for the population mean height of these players with a 0.35 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
Assuming that the heights of college women are normally distributed with mean 70 inches and standard...
Assuming that the heights of college women are normally distributed with mean 70 inches and standard deviation 3.4 inches, answer the following questions. (Hint: Use the figure below with mean μ and standard deviation σ.) (a) What percentage of women are taller than 70 inches? % (b) What percentage of women are shorter than 70 inches? % (c) What percentage of women are between 66.6 inches and 73.4 inches? % (d) What percentage of women are between 63.2 and 76.8...
The height (in inches) of a random sample of 8 National Basketball Association players is shown...
The height (in inches) of a random sample of 8 National Basketball Association players is shown below. x 71 73 74 76 77 78 79 80 12 The height of the shortest player deviates from the mean height by _______ standard deviations. a -1.82 b -1.75 c -1.68 d -1.60 13 The height of the tallest player deviates from the mean height by _______ standard deviations. a 1.47 b 1.41 c 1.36 d 1.28
The heights and weights of a random sample of male Senior HS basketball players are given...
The heights and weights of a random sample of male Senior HS basketball players are given in the table. Is there enough evidence that the heights and weights have a linear relationship? height/weight: (76,246), (72,207), (75,220), (74,200), (72,170), (71,175), (68,150), (74,210), (74,245), (72,200)
(Sample distributions) Heights of males at WSU are normally distributed with a mean of 70 inches...
(Sample distributions) Heights of males at WSU are normally distributed with a mean of 70 inches and a standard deviation of 3.5 inches. You will randomly select 16 males at WSU at record the mean height. (a) Explain why the men of your sample will likely not be the population mean of 70 inches. (b) What is the mean of your sampling distribution of means? (c) What is the standard deviation of your sampling distribution of means? (d) The Central...
The distribution of heights of basketball players is assumed to be normally distributed with a mean...
The distribution of heights of basketball players is assumed to be normally distributed with a mean of 75 inches and standard deviation of 5 inches. Approximately what percent of basketball players have heights more than 90 inches? The distribution of heights of basketball players is assumed to be normally distributed with a mean of 75 inches and standard deviation of 5 inches. Approximately what percent of basketball players have heights more than 80 inches? The distribution of heights of basketball...
Consider the heights (inches) for a simple random sample of ten (10) supermodels listed below: 70,...
Consider the heights (inches) for a simple random sample of ten (10) supermodels listed below: 70, 71, 69.25, 68.5, 69, 70, 71, 70, 70, 69.5 There is a claim that supermodels have heights that have much less variation than the heights of women in the general population. (a) Use a Hypothesis test with a significance level of 0.01 to verify the claim that supermodels have heights with a standard deviation that is less than 2.6 inches. (b) Use the Confidence...
16#2 The following table provides the starting players of a basketball team and their heights Player...
16#2 The following table provides the starting players of a basketball team and their heights Player A B C D E Height (in.) 75 77 78 81 84 a. The population mean height of the five players is: 79 b. Find the sample means for samples of size 2. A, B: ?¯ = A, C: ?¯ = A, D: ?¯ = A, E: ?¯= B, C: ?¯ = B, D: ?¯ = B, E: ?¯ = C, D: ?¯= C,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT