Question

In: Chemistry

Calculate the freezing point and boiling point of 543 ppm (1ppm=1mg/L) MgCl2 solution in water, assuming...

Calculate the freezing point and boiling point of 543 ppm (1ppm=1mg/L) MgCl2 solution in water, assuming complete dissociation. Mass of solution is 1000g/L.   (The Kb of water is 0.51 °C kg/mol and the Kf of water is 1.86 °C kg/mol

Solutions

Expert Solution

Apply Colligative properties

This is a typical example of colligative properties.

Recall that a solute ( non volatile ) can make a depression/increase in the freezing/boiling point via:

dTf = -Kf*molality * i

dTb = Kb*molality * i

where:

Kf = freezing point constant for the SOLVENT; Kb = boiling point constant for the SOLVENT;

molality = moles of SOLUTE / kg of SOLVENT

i = vant hoff coefficient, typically the total ion/molecular concentration.

At the end:

Tf mix = Tf solvent - dTf

Tb mix = Tb solvent - dTb

change mg to mass ; 543 mg of MgCl2 --> 0.543 g of MgCl2

MW of MgCl2 = 95.211 g/mol; i = 3 ions, Mg+2 and 2Cl-

kg of solvent = 1000 g/L --> 1 kg/L, assume 1 Liter balance

dTf = -1.86 * (0.543/95.211 ) / 1 * 3

dTf = -0.031823 °C

For BP

dTb = 0.512* (0.543/95.211 ) / 1 * 3

dTb =0.00875 °C

Tb = 100.00875 °C


Related Solutions

Calculate the freezing point and boiling point in each solution,assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. A. Calculate the freezing point of a solution containing 10.7 g FeCl3 in 164 g water. B. Calculate the boiling point of the solution above C. Calculate the freezing point of a solution containing 3.7 % KCl by mass (in water). D. Calculate the boiling point of the solution above.  
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. 1) Calculate the freezing point of a solution containing 10.6 g FeCl3 in 151 g water. 2) Calculate the boiling point of a solution above. 3) Calculate the freezing point of a solution containing 6.2% KCl by mass (in water). Express your answer using two significant figures. 4) Calculate the boiling point of a solution above 5) Calculate the freezing point of a solution...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a.Calculate the freezing point of a solution containing 13.0 g FeCl3 in 164 g water. b.Calculate the boiling point of a solution above. c.Calculate the freezing point of a solution containing 3.9 % KCl by mass (in water). Express your answer using two significant figures. d.Calculate the boiling point of a solution above. e.Calculate the freezing point of a solution containing 0.162 m MgF2....
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. A.) Calculate the freezing point of the solution containing 0.114 m K2S. B.) Calculate the boiling point of the solution above. C.) Calculate the freezing point of the solution containing 22.1 g of CuCl2 in 459 g water. D.) Calculate the boiling point of the solution above. E.) Calculate the freezing point of the solution containing 5.6 % NaNO3 by mass (in water)....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a) Calculate the freezing point of a solution containing 12.2 g FeCl3 in 158 g water. b) Calculate the boiling point of a solution above. c) Calculate the freezing point of a solution containing 4.5 % KCl by mass (in water). d) Calculate the boiling point of a solution above. e) Calculate the freezing point of a solution containing 0.170 m MgF2. f) Calculate...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. Use Kf=1.86∘C/m and Kb=0.512∘C/m. Part A Calculate the freezing point of the solution containing 0.118 m K2S. Part B Calculate the boiling point of the solution above. Part C Calculate the freezing point of the solution containing 25.2 g of CuCl2 in 480 g water. Part D Calculate the boiling point of the solution above. Part E Calculate the freezing point of the...
Assuming 100% dissociation, calculate the freezing point ( ?f ) and boiling point ( ?b )...
Assuming 100% dissociation, calculate the freezing point ( ?f ) and boiling point ( ?b ) of 2.84 ? K3PO4(aq) . Colligative constants can be found in the chempendix. ?f= ∘C ?b= ∘C help please
Assuming 100% dissociation, calculate the freezing point and boiling point of 0.550 mol of K3PO4 in...
Assuming 100% dissociation, calculate the freezing point and boiling point of 0.550 mol of K3PO4 in 1.00 kg of water. A) freezing point: Answer in Celsius B) boiling point: Answer in Celsius
9. Calculate the freezing point and boiling point of the following aqueous solutions, assuming complete dissociation:...
9. Calculate the freezing point and boiling point of the following aqueous solutions, assuming complete dissociation: (a) 10.5 g FeCl3 in 1.50
Given: Calculate the freezing point and boiling point of a solution containing 17.0 g of naphthalene...
Given: Calculate the freezing point and boiling point of a solution containing 17.0 g of naphthalene (C10H8) in 119.0 mL of benzene. Benzene has a density of 0.877 g/cm3. Part A Calculate the freezing point of a solution. (Kf(benzene)=5.12∘C/m.) Part B Calculate the boiling point of a solution. (Kb(benzene)=2.53∘C/m.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT