In: Statistics and Probability
Consider the quarterly electricity production for years
1-4:
Year 1 2 3 4
Q1 99 120 139 160
Q2 88 108 127 148
Q3 93 111 131 150
Q4 111 130 152 170
(a) Estimate the trend using a centered moving average.
(b) Using a classical additive decomposition, calculate the
seasonal component.
(c) Explain how you handled the end points. - PLEASE
PROVIDE ANSWER C !
Note: Explain all the steps and computations
a) If the end-points are ignored, we obtain the following results:
| Year | Quarter | Obs | Simple MA | Centred MA |
| 1 | 1 | 99 | ||
| 1 | 2 | 88 | ||
| 97.75 | ||||
| 1 | 3 | 93 | 100.375 | |
| 103 | ||||
| 1 | 4 | 111 | 105.5 | |
| 108 | ||||
| 2 | 1 | 120 | 110.25 | |
| 112.5 | ||||
| 2 | 2 | 108 | 114.875 | |
| 117.25 | ||||
| 2 | 3 | 111 | 119.625 | |
| 122 | ||||
| 2 | 4 | 130 | 124.375 | |
| 126.75 | ||||
| 3 | 1 | 139 | 129.25 | |
| 131.75 | ||||
| 3 | 2 | 127 | 134.5 | |
| 137.25 | ||||
| 3 | 3 | 131 | 139.875 | |
| 142.5 | ||||
| 3 | 4 | 152 | 145.125 | |
| 147.75 | ||||
| 4 | 1 | 160 | 150.125 | |
| 152.5 | ||||
| 4 | 2 | 148 | 154.75 | |
| 157 | ||||
| 4 | 3 | 150 | ||
| 4 | 4 | 170 |
b)I Because the centered moving average (CMA) contains no seasonality and no or little irregularity, the seasonal component may be estimated by
For example,Seasonal component =93/100.375=0.9265 and calculate other values
| Obs | Centred MA | Seasonal component |
| 93 | 100.375 | 0.926525529 |
| 111 | 1055 | 0.10521327 |
| 120 | 110.25 | 1.088435374 |
| 108 | 114.875 | 0.940152339 |
| 111 | 119.625 | 0.927899687 |
| 130 | 124.375 | 1.045226131 |
| 139 | 129.25 | 1.075435203 |
| 127 | 134.5 | 0.944237918 |
| 131 | 139.875 | 0.936550492 |
| 152 | 145.125 | 1.047372954 |
| 160 | 150.125 | 1.065778518 |
| 148 | 154.75 | 0.95638126 |
c) End points ignored. Other approaches are possible.