In: Statistics and Probability
Consider the quarterly electricity production for years
1-4:
Year 1 2 3 4
Q1 99 120 139 160
Q2 88 108 127 148
Q3 93 111 131 150
Q4 111 130 152 170
(a) Estimate the trend using a centered moving average.
(b) Using a classical additive decomposition, calculate the
seasonal component.
(c) Explain how you handled the end points. - PLEASE
PROVIDE ANSWER C !
Note: Explain all the steps and computations
a) If the end-points are ignored, we obtain the following results:
Year | Quarter | Obs | Simple MA | Centred MA |
1 | 1 | 99 | ||
1 | 2 | 88 | ||
97.75 | ||||
1 | 3 | 93 | 100.375 | |
103 | ||||
1 | 4 | 111 | 105.5 | |
108 | ||||
2 | 1 | 120 | 110.25 | |
112.5 | ||||
2 | 2 | 108 | 114.875 | |
117.25 | ||||
2 | 3 | 111 | 119.625 | |
122 | ||||
2 | 4 | 130 | 124.375 | |
126.75 | ||||
3 | 1 | 139 | 129.25 | |
131.75 | ||||
3 | 2 | 127 | 134.5 | |
137.25 | ||||
3 | 3 | 131 | 139.875 | |
142.5 | ||||
3 | 4 | 152 | 145.125 | |
147.75 | ||||
4 | 1 | 160 | 150.125 | |
152.5 | ||||
4 | 2 | 148 | 154.75 | |
157 | ||||
4 | 3 | 150 | ||
4 | 4 | 170 |
b)I Because the centered moving average (CMA) contains no seasonality and no or little irregularity, the seasonal component may be estimated by
For example,Seasonal component =93/100.375=0.9265 and calculate other values
Obs | Centred MA | Seasonal component |
93 | 100.375 | 0.926525529 |
111 | 1055 | 0.10521327 |
120 | 110.25 | 1.088435374 |
108 | 114.875 | 0.940152339 |
111 | 119.625 | 0.927899687 |
130 | 124.375 | 1.045226131 |
139 | 129.25 | 1.075435203 |
127 | 134.5 | 0.944237918 |
131 | 139.875 | 0.936550492 |
152 | 145.125 | 1.047372954 |
160 | 150.125 | 1.065778518 |
148 | 154.75 | 0.95638126 |
c) End points ignored. Other approaches are possible.