In: Economics
50-1/1
Assuming competitive markets with typical supply and demand curves, which of the following statements is correct?
An increase in demand with no change in supply will result in an increase in sales.
An increase in supply with no change in demand will result in an increase in price.
An increase in supply with a decrease in demand will result in an increase in price.
An increase in supply with no change in demand will result in a decline in sales.
53.1/1
(1) | (2) | (3) | |||
DI | C | DI | C | DI | C |
$0 | $4 | $0 | $65 | $0 | $2 |
10 | 11 | 80 | 125 | 20 | 20 |
20 | 18 | 160 | 185 | 40 | 38 |
30 | 25 | 240 | 245 | 60 | 56 |
40 | 32 | 320 | 305 | 80 | 74 |
50 | 39 | 400 | 365 | 100 | 92 |
Refer to the given consumption schedules. DI signifies disposable income and C represents consumption expenditures. All figures are in billions of dollars. The marginal propensity to consume in economy (1) is
0.7.
0.5.
0.3.
0.8.
50-1/1. In competitive markets with typical downward sloping demand curve and upward rising supply curve, an increase in demand with unchanged supply will lead to an increase in sales.
This has also been shown graphically:
When demand increases with no change in supply, only the demand curve shifts outward from D to D’. As a result, equilibrium price and sales both increase.
So, answer is Option A.
53.1/1
(1) |
(2) |
(3) |
||||
DI ($) |
C ($) |
MPC |
DI |
C |
DI |
C |
0 |
4 |
- |
$0 |
$65 |
$0 |
$2 |
10 |
11 |
0.7 |
80 |
125 |
20 |
20 |
20 |
18 |
0.7 |
160 |
185 |
40 |
38 |
30 |
25 |
0.7 |
240 |
245 |
60 |
56 |
40 |
32 |
0.7 |
320 |
305 |
80 |
74 |
50 |
39 |
0.7 |
400 |
365 |
100 |
92 |
The marginal propensity to consume is 0.7. It has been calculated in the above table for economy (1).
Marginal propensity to consume determines what fraction of the disposable income is to be consumed.
Mathematically, it is calculated as follows:
Marginal propensity to consume = (Change in consumption)/(Change in DI).
For example, when DI = 0, C = 4
And when DI = 10, C = 11.
So, MPC = (11-4)/(10-0) = 7/10 = 0.7
So, answer is Option A.