In: Statistics and Probability
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
=( Xi) / n = (4.9176 + ... + 9.1416 ) / 24= 6.4049
=( Yi)/n = (25.9 + ... + 45.8) / 24 = 34.6125
Sxx= (Xi-)2 =(Xi2)-n.2 = 1042.114 - 24 * 6.4049 ^2 = 57.5681
Syy= (Yi-)2 =(Yi2)-n.2 = 29581.65 - 24 * 34.6125 ^2 = 829.04625
Sxy= (Xi-)(Yi-) =(XiYi)-n. = 5511.925 - 24*6.4049* 34.6125 = 191.3746
a)
Least square estimate of slope is
= Sxy/Sxx= 191.3746 / 57.5681 = 3.324
Least square estimate of intercept is
= - . =34.6125 - 3.3243 x 6.4049 = 13.32
b)
So, Regression Equation become-
= + *X = 13.32 + 3.324 *X
Mean selling price when taxes paid are 5.3 is 13.32 + 3.324 * 5.3 = 30.94 (in thosands)
c)
For observation 2, x = 5.0208 , fitted value = + *X = 13.32 + 3.324 *5.0208 = 30.01
Corresponding residual = Y - = 29.5 - 30.01 = - 0.51
If you find my answer useful please put thumbs up. Thank you.