In: Statistics and Probability
 
  | 
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
  | 
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
=(
 Xi)
/ n = (4.9176 + ... + 9.1416 ) / 24= 6.4049
=(
Yi)/n = (25.9 + ... + 45.8) / 24 = 34.6125
Sxx= 
(Xi-
)2
=
(Xi2)-n.
2 =
1042.114 - 24 * 6.4049 ^2 = 57.5681
Syy= 
(Yi-
)2
=
(Yi2)-n.
2 =
29581.65 - 24 * 34.6125 ^2  = 829.04625
Sxy= 
(Xi-
)(Yi-
)
=
(XiYi)-n.
 =
5511.925 - 24*6.4049* 34.6125 = 191.3746
a)
Least square estimate of slope is
=
Sxy/Sxx= 191.3746 / 57.5681 = 3.324
Least square estimate of intercept is
=
-
 .
=34.6125 - 3.3243 x 6.4049 = 13.32
b)
So, Regression Equation become-
=
+ 
*X = 13.32
+ 3.324 *X
Mean selling price when taxes paid are 5.3 is 13.32 + 3.324 * 5.3 = 30.94 (in thosands)
c)
For observation 2,  x = 5.0208 ,
fitted value 
=
 +
*X =
13.32 + 3.324 *5.0208 = 30.01
Corresponding residual = Y - 
 =
29.5 - 30.01 = - 0.51
If you find my answer useful please put thumbs up. Thank you.