In: Finance
The current price of a non-dividend-paying stock is $32.59 and you expect the stock price to either go up by a factor of 1.397 or down by a factor of 0.716 over the next 0.7 years.
A European put option on the stock has a strike price of $33 and expires in 0.7 years. The risk-free rate is 3% (annual, continuously compounded).
Part 1. What is the option payoff if the stock price goes down?
Part 2. What is the risk-neutral probability of an up movement?
Part 3. What is the value of the option?
| Particulars | Amount | |||||
| Stock Price | $ 32.59 | |||||
| Strike Price | $ 33.00 | |||||
| Upside price | $ 33.99 | |||||
| Down side Price | $ 31.87 | |||||
| Risk Free Rate per period | 2.10% | |||||
| Rater per anum | 3.00% | |||||
| Time period in Years | 0.7000 | |||||
| Risk Nuetral Prob to go upside ( P ): | ||||||
| P = [ e^rt - d ] / [ u - d ] | ||||||
| d = Down side price / Stock Price | ||||||
| u = Upside Price / Stock Price | ||||||
| e^rt : | ||||||
| = e^0.03 * 0.7 | ||||||
| = e^0.021 | ||||||
| = 1.0212 | ||||||
| d = $ 31.874 / $ 32.59 | ||||||
| = 0.978 | ||||||
| u = $ 33.987 / $ 32.59 | ||||||
| = 1.0429 | ||||||
| P = [ e^rt - d ] / [ u - d ] | ||||||
| = [ e^0.03 * 0.7 - 0.978 ] / [ 1.0429 - 0.978 ] | ||||||
| = [ e^0.021 - 0.978 ] / [ 1.0429 - 0.978 ] | ||||||
| = [ 1.0212 - 0.978 ] / [ 1.0429 - 0.978 ] | ||||||
| = [ 0.0432 ] / [ 0.0648 ] | ||||||
| = 0.6662 | ||||||
| Risk Nuetral Prob to go Downside side (1 - P ): | ||||||
| 1 - P = 1 - 0.6662 | ||||||
| = 0.3338 | ||||||
| Value of Put after 0.7 Years : | ||||||
| Future SP | Strike Price | Exercise/ Lapse | Prob | Value of Put | Expected Vp | |
| $ 33.99 | $ 33.00 | Lapse | 0.6662 | $ - | $ - | |
| $ 31.87 | $ 33.00 | Exercise | 0.3338 | $ 1.13 | $ 0.38 | |
| Value of Put after 0.7 Years | $ 0.38 | |||||
| Value of put Today: | ||||||
| Value of Put after 0.7 Years * e^-rt | ||||||
| = $ 0.3758588 * e^-0.03 * 0.7 | ||||||
| = $ 0.3758588 * e^-0.021 | ||||||
| = $ 0.3758588 * 0.9792 | ||||||
| = $ 0.368 | ||||||
| Value of Put is $0.37 |