Question

In: Statistics and Probability

The College Board provided comparisons of SAT scores based on the highest level of education attained...

The College Board provided comparisons of SAT scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. This data set contains verbal SAT scores for a sample of students whose parents are college graduates and a sample of students whose parents are high school graduates. Use 0.01 as your level of significance.

  1. Formulate hypotheses to test the research hypothesis. Let population 1 be the students whose parents are college graduates and let population 2 be students whose parents are high school graduates.
  2. Is this an one-tailed or two-tailed test?
  3. Use Excel to test your hypotheses. What is the test statistic?
  4. What is the p-value?
  5. What is the critical value?
  6. What is your conclusion using 0.01 as the level of significance?
  7. Explain your conclusion in the context of the problem (i.e. in terms a non-statistician could understand).
College High School
485 442
534 580
650 479
554 486
550 528
572 524
497 492
592 478
487 425
533 485
526 390
410 535
515
578
448
469
College High School
485 442
534 580
650 479
554 486
550 528
572 524
497 492
592 478
487 425
533 485
526 390
410 535
515
578
448
469

Solutions

Expert Solution

using excel>addin>phsatat>two sample test

we have

Pooled-Variance t Test for the Difference Between Two Means
(assumes equal population variances)
Data
Hypothesized Difference 0
Level of Significance 0.01
Population 1 Sample
Sample Size 16
Sample Mean 525
Sample Standard Deviation 59.4
Population 2 Sample
Sample Size 12
Sample Mean 487
Sample Standard Deviation 51.7
Intermediate Calculations
Population 1 Sample Degrees of Freedom 15
Population 2 Sample Degrees of Freedom 11
Total Degrees of Freedom 26
Pooled Variance 3166.4304
Standard Error 21.4889
Difference in Sample Means 38.0000
t Test Statistic 1.7684
Upper-Tail Test
Upper Critical Value 2.4786
p-Value 0.0444
Do not reject the null hypothesis
  1. this is one-tailed test.
  2. \the test statistic is 1.7684
  3. the p-value is 0.0444
  4. the critical value is 2.4786
  5. Do nit reject Ho beacsue the value of test statistic is less than 2.4786
  6. we dont have sufficient evidance to conclude that parents who had attained a higher level of education would on average score higher on the SAT

Related Solutions

The comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained...
The comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents were provided. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was  (College Board website, January 8, 2012). SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514.† SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514.† SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514.† SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board finds that the distribution of students' SAT scores depends on the level of...
The College Board finds that the distribution of students' SAT scores depends on the level of education their parents have. Children of parents who did not finish high school have SAT math scores X with mean 446 and standard deviation 103. Scores Y of children of parents with graduate degrees have mean 555 and standard deviation 107. Perhaps we should standardize to a common scale for equity. Find numbers a, b, c, and d such that a + bX and...
The College Board finds that the distribution of students' SAT scores depends on the level of...
The College Board finds that the distribution of students' SAT scores depends on the level of education their parents have. Children of parents who did not finish high school have SAT math scores X with mean 448 and standard deviation 106. Scores Y of children of parents with graduate degrees have mean 562 and standard deviation 101. Perhaps we should standardize to a common scale for equity. Find numbers a, b, c, and d such that a + bX and...
According to the College Board, scores on the math section of the SAT Reasoning college entrance...
According to the College Board, scores on the math section of the SAT Reasoning college entrance test in a recent year had a mean of 511 and a standard deviation of 119. Assume that they are roughly normal. (a) What was the interval spanned by the middle 95% of SAT scores? (b) How high must a student score to be in the top 16% of SAT scores?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT