In: Statistics and Probability
A simple random sample with n=52 provided a sample mean of 24.0 and a sample standard deviation of 4.5.
a. Develop a 90% confidence interval for the population mean (to 1 decimal).
,
b. Develop a 95% confidence interval for the population mean (to 1 decimal).
,
c. Develop a 99% confidence interval for the population mean (to 1 decimal).
,
d. What happens to the margin of error and the confidence interval as the confidence level is increased?
Solution :
a.
t /2,df = 1.675
Margin of error = E = t/2,df * (s /n)
= 1.675 * (4.5 / 52)
Margin of error = E = 1.0
The 90% confidence interval estimate of the population mean is,
- E < < + E
24.0 - 1.0 < < 24.0 + 1.0
23.0 < < 25.0
A 90% confidence interval for the population mean :(23.0 , 25.0)
b.
t /2,df = 2.008
Margin of error = E = t/2,df * (s /n)
= 2.008 * (4.5 / 52)
Margin of error = E = 1.3
The 95% confidence interval estimate of the population mean is,
- E < < + E
24.0 - 1.3 < < 24.0 + 1.3
22.7 < < 25.3
A 95% confidence interval for the population mean :(22.7 , 25.3)
c.
t /2,df = 2.676
Margin of error = E = t/2,df * (s /n)
= 2.676 * (4.5 / 52)
Margin of error = E = 1.7
The 99% confidence interval estimate of the population mean is,
- E < < + E
24.0 - 1.7 < < 24.0 + 1.7
22.3 < < 25.7
A 99% confidence interval for the population mean : (22.3, 25.7)
d.
Margin of error and confidance interval also increased