In: Statistics and Probability
can you check if my answers are correct and can you please type the correct answers for each question
Estimate the probability that the store will gross over $850
Answer:
p = .6 and q = 1 - p= .4
a.
=> P(at least 6 out of 10 business days)
=> P(x=6) + P(x=7) + P(x=8) + P(x=9) + P(x=10)
=> (10 C 6) * (0.6)^6 * (0.4)^4 + (10 C 7) * (0.6)^7 * (0.4)^3 + (10 C 8) * (0.6)^8 * (0.4)^2 + (10 C 9) * (0.6)^9 * (0.4)^1 + (10 C 10) * (0.6)^10 * (0.4)^0
=> 210 * (0.6)^6 * (0.4)^4 + 120* (0.6)^7 * (0.4)^3 + 45 * (0.6)^8 * (0.4)^2 + 10 * (0.6)^9 * (0.4)^1 + 1 * (0.6)^10 * (0.4)^0
=> 0.25 + 0.214+ 0.12+0.0403+0.006
=0.63
b.
P(at most 3 of the 10)
=> P(x=0) + P(x=1) + P(x=2) + P(x=3)
=> (10 C 0) * .6^1 * 0.4^10 + (10 C 1) * 0.6^1 * .4^9 + (10 C 2) * 0.6^2 * 0.4 ^ 8 + (10 C 3) * 0.6 ^ 3 * 0.4^7
=0.058
c.
=> P(fewer than 7 out of 20)
=> P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) + P(x=6)
=> (20 C 0) * 0.6^0 * 0.4^20 + (20 C 1) * 0.6^1 * 0.4^19 + (20 C 2) * 0.6^2 * 0.4^18 + (20 C 3) * 0.6^3 * 0.4^17 +(20 C 4) * 0.6^4 * 0.4^16 + (20 C 5) * 0.6^5 * 0.4^15 + (20 C 6) * 0.6^6 * 0.4^14
=> 0.00653
d.
P(more than 16 out of 20)
=> P(x=17) + P(x=18) + P(x=19) + P(x=20)
=> (20 C 17) * 0.6^17 * .4^3 + (20 C 18) * 0.6^18* .4^2 + (20 C 19) * 0.6^19 * .4^1 + (20 C 20) * 0.6^20 * 0.4^0
=> 0.016