In: Finance
Today, Malorie takes out a 20-year loan of $200,000, with a fixed interest rate of 4.5% per annum compounding monthly for the first 3 years. Afterwards, the loan will revert to the market interest rate. Malorie will make monthly repayments over the next 20 years, the first of which is exactly one month from today. The bank calculates her current monthly repayments assuming the fixed interest rate of 4.5% will stay the same over the coming 20 years.
(b) Calculate the loan outstanding at the end of the fixed interest period (i.e. after 3 years).
c) Calculate the total interest Malorie pays over this fixed interest period.
(d) After the fixed interest period, the market interest rate becomes 5.5% per annum effective. Assuming the interest rate stays at this new level for the remainder of the term of the loan, calculate the new monthly installment. Dont round up or down please. Thank you!
EMI = P*i*(1+i)^n/[{(1+i)^n}-1]
Where,
P = Principal = 200000
i= Interest Rate = 0.045/12 = 0.00375
n= Number of periods = 20*12 = 240
Therefore, EMI = 200000*0.00375*(1+0.00375)^240/[{(1+0.00375)^240}-1]
= 750*(2.455466)/[2.455466-1] = 1841.5995/1.455466 = $1265.3
Amortization Schedule for first 3 years:
Period | Opening Principal (previous closing) |
Interest (opening*0.00375) |
Installment | Principal Repayment (installment-interest) |
Closing Principal (opening-principal repayment) |
1 | 200000 | 750 | 1265.3 | 515.3 | 199484.7 |
2 | 199484.7 | 748.067625 | 1265.3 | 517.232375 | 198967.468 |
3 | 198967.468 | 746.1280036 | 1265.3 | 519.171996 | 198448.296 |
4 | 198448.296 | 744.1811086 | 1265.3 | 521.118891 | 197927.177 |
5 | 197927.177 | 742.2269128 | 1265.3 | 523.073087 | 197404.104 |
6 | 197404.104 | 740.2653887 | 1265.3 | 525.034611 | 196879.069 |
7 | 196879.069 | 738.2965089 | 1265.3 | 527.003491 | 196352.066 |
8 | 196352.066 | 736.3202458 | 1265.3 | 528.979754 | 195823.086 |
9 | 195823.086 | 734.3365717 | 1265.3 | 530.963428 | 195292.122 |
10 | 195292.122 | 732.3454589 | 1265.3 | 532.954541 | 194759.168 |
11 | 194759.168 | 730.3468793 | 1265.3 | 534.953121 | 194224.215 |
12 | 194224.215 | 728.3408051 | 1265.3 | 536.959195 | 193687.256 |
13 | 193687.256 | 726.3272082 | 1265.3 | 538.972792 | 193148.283 |
14 | 193148.283 | 724.3060602 | 1265.3 | 540.99394 | 192607.289 |
15 | 192607.289 | 722.2773329 | 1265.3 | 543.022667 | 192064.266 |
16 | 192064.266 | 720.2409979 | 1265.3 | 545.059002 | 191519.207 |
17 | 191519.207 | 718.1970267 | 1265.3 | 547.102973 | 190972.104 |
18 | 190972.104 | 716.1453905 | 1265.3 | 549.154609 | 190422.95 |
19 | 190422.95 | 714.0860607 | 1265.3 | 551.213939 | 189871.736 |
20 | 189871.736 | 712.0190084 | 1265.3 | 553.280992 | 189318.455 |
21 | 189318.455 | 709.9442047 | 1265.3 | 555.355795 | 188763.099 |
22 | 188763.099 | 707.8616205 | 1265.3 | 557.43838 | 188205.66 |
23 | 188205.66 | 705.7712266 | 1265.3 | 559.528773 | 187646.132 |
24 | 187646.132 | 703.6729937 | 1265.3 | 561.627006 | 187084.505 |
25 | 187084.505 | 701.5668924 | 1265.3 | 563.733108 | 186520.772 |
26 | 186520.772 | 699.4528932 | 1265.3 | 565.847107 | 185954.924 |
27 | 185954.924 | 697.3309666 | 1265.3 | 567.969033 | 185386.955 |
28 | 185386.955 | 695.2010827 | 1265.3 | 570.098917 | 184816.856 |
29 | 184816.856 | 693.0632118 | 1265.3 | 572.236788 | 184244.62 |
30 | 184244.62 | 690.9173238 | 1265.3 | 574.382676 | 183670.237 |
31 | 183670.237 | 688.7633888 | 1265.3 | 576.536611 | 183093.7 |
32 | 183093.7 | 686.6013765 | 1265.3 | 578.698624 | 182515.002 |
33 | 182515.002 | 684.4312567 | 1265.3 | 580.868743 | 181934.133 |
34 | 181934.133 | 682.2529989 | 1265.3 | 583.047001 | 181351.086 |
35 | 181351.086 | 680.0665726 | 1265.3 | 585.233427 | 180765.853 |
36 | 180765.853 | 677.8719473 | 1265.3 | 587.428053 | 180178.425 = Loan Outstanding |
Total Interest Paid = [Sum of above Interests] |
25729.22455 |
EMI = P*i*(1+i)^n/[{(1+i)^n}-1]
Where,
P = Principal = 180178.425
i= Interest Rate = 0.055/12 = 0.004583
n= Number of periods = 17*12 = 204
Therefore, New EMI = 180178.425*0.004583*(1+0.004583)^204/[{(1+0.004583)^204}-1]
= 825.81778*(2.541778)/[2.541778-1] = 2099.0455/1.541778 = $1361.44