Question

In: Physics

In the first stage of a two-stage rocket, the rocket is fired from the launch pad...

In the first stage of a two-stage rocket, the rocket is fired from the launch pad starting from rest but with a constant acceleration of 3.50 m/s2 upward. At 25.0 s after launch, the second stage fires for 10.0 s, which boosts the rocket’s velocity to 132.5 m/s upward at 35.0 s after launch. This firing uses up all the fuel, however, so after the second stage has finished firing, the only force acting on the rocket is gravity. Air resistance can be neglected.

Part A

Find the maximum height that the stage-two rocket reaches above the launch pad.

the answer is 3090m

Part B

How much time after the stage-two firing will it take for the rocket to fall back to the launch pad?

Part C

How fast will the stage-two rocket be moving just as it reaches the launch pad?

Solutions

Expert Solution


Related Solutions

Projectile Motion - From Ground - General Launch Angle A rocket is fired at an initial...
Projectile Motion - From Ground - General Launch Angle A rocket is fired at an initial speed v0 = 160.0 m/s from ground level, at an angle θ = 46° above the horizontal. Ignore air resistance. The magnitude of the gravitational acceleration is 9.8 m/s2. Choose the RIGHT as positive x-direction. Choose UPWARD as psotitive y-direction Keep 2 decimal places in all answers A. Find v0x, the x component of the initial velocity (in m/s) B.Find v0y, the y component...
Projectile Motion - Rocket Clears Wall - General Launch Angle A rocket is fired at an...
Projectile Motion - Rocket Clears Wall - General Launch Angle A rocket is fired at an initial speed v0 = 165.0 m/s from ground level, at an angle θ = 50° above the horizontal. A wall is located at d = 67.0 m. Its heigh is h = 47.0 m. Ignore air resistance. The magnitude of the gravitational acceleration is 9.8 m/s2. Choose the RIGHT as positive x-direction. Choose UPWARD as psotitive y-direction Find v0x, the x component of the...
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 550 m , its engines suddenly fail so that the only force acting on it is now gravity. a)What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the launch...
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds...
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is given by a(t) = 60t ft/s2 , at which time the fuel is exhausted and it becomes a freely “falling” body and falls to the ground. (a) Determine the position function s(t) for all times t > 0. (b) What is the maximum height achieved by the rocket? ( c) At what value of t does the rocket land?
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds...
A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is a(t)=96t, at which time the fuel is exhausted and it becomes a freely "falling" body. 1919 seconds later, the rocket's parachute opens, and the (downward) velocity slows linearly to −16 ft/s in 5 s. The rocket then "floats" to the ground at that rate. (a) Determine the position function s and the velocity function v(for all times t). v(t)=    if 0≤t≤3    ...
A projectile is launched vertically from a launch pad with an unknown initial velocity, V0. An...
A projectile is launched vertically from a launch pad with an unknown initial velocity, V0. An unknown time, T, later, an observer is in a pickup which is traveling in such a way that the angle of elevation to the projectile is 22° and increasing at 2° per second. When the pickup is 750 m away from the launch pad, it is moving away from the launch pad at 25 m/sec. A) Find the initial velocity, V0. B) Find the...
A rocket is fired upward from some initial height above the ground
11. A rocket is fired upward from some initial height above the ground. Its height h in feet above the ground t seconds after it is fired is given by h = -16t2 + 48t +448.(i) What is its initial height? __________ ft. (ii) What is its maximum height? ___________ ft.(iii) How long does it take to reach the ground? __________ sec.
A model rocket is fired from the ground in a parabolic arc. At the very top...
A model rocket is fired from the ground in a parabolic arc. At the very top of the arc, at a horizontal displacement of 260 m from the launch point, an explosion occurs within the rocket, breaking it into two fragments which separate from each other. One fragment, having 1/3 the mass of the rocket, falls straight down to Earth as if it were at rest at that moment right after the explosion.  Determine the total horizontal displacement from the launch...
A rocket is launched straight up. It contains two stages (Stage 1 and Stage 2) of...
A rocket is launched straight up. It contains two stages (Stage 1 and Stage 2) of solid rocket fuel that are designed to burn for 10.0 and 5.0 s, respectively, with no time interval between them. In Stage 1, the rocket fuel provides a net upward acceleration of 18 m/s2. In Stage 2, the net upward acceleration is 13 m/s2. Neglecting air resistance, calculate the maximum altitude above the surface of Earth of the payload and the time required for...
A 785-kg two-stage rocket is traveling at a speed of 6.30
A 785-kg two-stage rocket is traveling at a speed of 6.30
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT