In: Finance
Consider the following information: |
Rate of Return if State Occurs | ||||
State of Economy | Probability of State of Economy |
Stock A | Stock B | Stock C |
Boom | 0.64 | 0.21 | 0.25 | 0.25 |
Bust | 0.36 | 0.07 | 0.11 | 0.01 |
Requirement 1: |
What is the expected return on an equally weighted portfolio of these three stocks? (Do not round your intermediate calculations.) |
A) 17.43% B) 19.93% C) 29.46% E) 11.70% |
Requirement 2: |
What is the variance of a portfolio invested 30 percent each in A and B and 40 percent in C? (Do not round your intermediate calculations.) |
A) 0.012965 B) 0.010965 C) 0.007465 D) 0.015465 E) 0.015165 |
1.
Stock A | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 21 | 13.44 |
Bust | 0.36 | 7 | 2.52 |
Expected return %= | sum of weighted return = | 15.96 | |
Stock B | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 25 | 16 |
Bust | 0.36 | 11 | 3.96 |
Expected return %= | sum of weighted return = | 19.96 | |
Stock C | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 25 | 16 |
Bust | 0.36 | 1 | 0.36 |
Expected return %= | sum of weighted return = | 16.36 |
Expected return%= | Wt A*Return A+Wt B*Return B+Wt C*Return C | |
Expected return%= | 0.333333333333333*15.96+0.333333333333333*19.96+0.333333333333333*16.36 | |
Expected return%= | 17.43 |
2
Stock A | ||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% |
Boom | 0.64 | 21 | 13.44 | 5.04 |
Bust | 0.36 | 7 | 2.52 | -8.96 |
Expected return %= | sum of weighted return = | 15.96 | Sum=Variance Stock A= | |
Standard deviation of Stock A% | =(Variance)^(1/2) | |||
Stock B | ||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% |
Boom | 0.64 | 25 | 16 | 5.04 |
Bust | 0.36 | 11 | 3.96 | -8.96 |
Expected return %= | sum of weighted return = | 19.96 | Sum=Variance Stock B= | |
Standard deviation of Stock B% | =(Variance)^(1/2) | |||
Stock C | ||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% |
Boom | 0.64 | 25 | 16 | 8.64 |
Bust | 0.36 | 1 | 0.36 | -15.36 |
Expected return %= | sum of weighted return = | 16.36 | Sum=Variance Stock C= | |
Standard deviation of Stock C% | =(Variance)^(1/2) | |||
Covariance Stock A Stock B: | ||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability |
Boom | 0.64 | 5.0400 | 5.04 | 0.001625702 |
Bust | 0.36 | -8.96 | -8.96 | 0.002890138 |
Covariance=sum= | 0.00451584 | |||
Correlation A&B= | Covariance/(std devA*std devB)= | 1 | ||
Covariance Stock A Stock C: | ||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability |
Boom | 0.64 | 5.04 | 8.64 | 0.002786918 |
Bust | 0.36 | -8.96 | -15.36 | 0.004954522 |
Covariance=sum= | 0.00774144 | |||
Correlation A&C= | Covariance/(std devA*std devC)= | 1 | ||
Covariance Stock B Stock C: | ||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability |
Boom | 0.64 | 5.04 | 8.64 | 0.002786918 |
Bust | 0.36 | -8.96 | -15.36 | 0.004954522 |
Covariance=sum= | 0.00774144 | |||
Correlation B&C= | Covariance/(std devB*std devC)= | 1 | ||
Variance= | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | |||
Variance= | 0.007465 |