Question

In: Statistics and Probability

Male players at the high school, college, and professional ranks use a regulation basketball that weighs...

Male players at the high school, college, and professional ranks use a regulation basketball that weighs on average 22.8 ounces with a standard deviation of 1.4 ounce. Assume that the weights of basketballs are approximately normally distributed. What is the probability that a regulation basketball is randomly chosen and will weigh between 19.5 and 22.5 ounces?

Solutions

Expert Solution

Answer:-

Given that:-

Male players at the high school, college, and professional ranks use a regulation basketball that weighs on average 22.8 ounces with a standard deviation of 1.4 ounce. Assume that the weights of basketballs are approximately normally distributed.

What is the probability that a regulation basketball is randomly chosen and will weigh between 19.5 and 22.5 ounces?

the probability that a regulation basketball is randomly chosen and will weigh between 19.5 and 22.5 ounces

mean

standard deviation

   Using standard normal table,

Probability

Probability that a regulation of basketball is randomly chosen and will weight between 19.5 and 22.5 is .


Related Solutions

Two basketball players on a school team are working hard on consistency of their performance. In...
Two basketball players on a school team are working hard on consistency of their performance. In particular, they are hoping to bring down the variance of their scores. The coach believes that the players are not equally consistent in their games. Over a 10-game period, the scores of these two players are shown below. Assume that the two samples are drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: chi-square table or F...
The heights and weights of a random sample of male Senior HS basketball players are given...
The heights and weights of a random sample of male Senior HS basketball players are given in the table. Is there enough evidence that the heights and weights have a linear relationship? height/weight: (76,246), (72,207), (75,220), (74,200), (72,170), (71,175), (68,150), (74,210), (74,245), (72,200)
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate a 99% confidence interval for the population mean height of these players with a 0.45 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number, do not include any decimals) Answer:
The population standard deviation for the height of college basketball players is 2.4 inches. If we...
The population standard deviation for the height of college basketball players is 2.4 inches. If we want to estimate 97% confidence interval for the population mean height of these players with a 0.35 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 249 263 255 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 271 Weights (in lb) of pro basketball players: x2; n2 = 19 203 200 220 210 193 215 223 216 228 207 225 208 195 191 207...
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 244 262 256 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 272 Weights (in lb) of pro basketball players: x2; n2 = 19 203 200 220 210 193 215 222 216 228 207 225 208 195 191 207...
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 249 261 256 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 271 Weights (in lb) of pro basketball players: x2; n2 = 19 202 200 220 210 191 215 223 216 228 207 225 208 195 191 207...
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 247 262 255 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 272 Weights (in lb) of pro basketball players: x2; n2 = 19 202 200 220 210 193 215 222 216 228 207 225 208 195 191 207...
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 248 262 254 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 271 Weights (in lb) of pro basketball players: x2; n2 = 19 205 200 220 210 191 215 221 216 228 207 225 208 195 191 207...
Independent random samples of professional football and basketball players gave the following information. Assume that the...
Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric. Weights (in lb) of pro football players: x1; n1 = 21 245 261 255 251 244 276 240 265 257 252 282 256 250 264 270 275 245 275 253 265 272 Weights (in lb) of pro basketball players: x2; n2 = 19 203 200 220 210 192 215 222 216 228 207 225 208 195 191 207...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT