Question

In: Mechanical Engineering

A rail-gun fires a tungsten projectile horizontally with an exit muzzle velocity of 1500 m/s. The...

A rail-gun fires a tungsten projectile horizontally with an exit muzzle velocity of 1500 m/s. The horizontal acceleration of the projectile is given as ax = -40vx^2 + 125000vx - 96900000 where vx = horizontal velocity. The muzzle is 50 meters off the ground. At what distance, in meters, from the muzzle will the projectile strike the ground if the ground remains level? Do not neglect the effects due to gravity.

Please help, I don't understand how to do this problem since acceleration in the x direction is not constant.

Solutions

Expert Solution


Related Solutions

A person holds a rifle horizontally and fires at a target. The bullet has a muzzle...
A person holds a rifle horizontally and fires at a target. The bullet has a muzzle speed of 200m/s and the person hears the bullet strike the target 1.00s after firing it. The air temp is 72 degrees Fahrenheit. What is the distance to the target?
A person holds a rifle horizontally and fires at a target. The bullet has a muzzle...
A person holds a rifle horizontally and fires at a target. The bullet has a muzzle speed of 155 m/s, and the person hears the bullet strike the target 0.70 s after firing it. The air temperature is 77°F. What is the distance to the target
A spring gun fires a bullet of mass m=.04 kg horizontally at a ballistic pendulum apparatus...
A spring gun fires a bullet of mass m=.04 kg horizontally at a ballistic pendulum apparatus with a mass M=.350. the bullet lodges itself into the pendulum. After collision, the center of mass of the bullet and pendulum rises by .07 meters. What is the approximate initial speed v of the bullet?
A projectile is launched horizontally with an initial speed of v0 = 38.5 m/s at the...
A projectile is launched horizontally with an initial speed of v0 = 38.5 m/s at the top of a cliff in a lake (h = 80 m) What is the speed of the projectile when its height from the water is y = 30 m?
A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities.
A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 50.0 g and electrical resistance 0.300 \Omega rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 7.00 cm apart. The rails are also connected to a voltage source providing a voltage of V = 5.00 V. The...
A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic...
A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 40.0 g and electrical resistance 0.200 Ωrests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 10.0 cm apart. (Figure 1) The rails are also connected to a voltage source providing a voltage of V = 5.00 V...
A Rail Gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic...
A Rail Gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass m and electrical resistance R rests on parallel horizontal rails (that have negligible electric resistance), which are a distance L apart, as shown in (Figure 1). The rails are also connected to a voltage source V, so a current loop is formed. The vertical magnetic...
Problem 11 A hunter fires a 30.00g bullet with a velocity of +350.00 m/s at a...
Problem 11 A hunter fires a 30.00g bullet with a velocity of +350.00 m/s at a 50.00kg target. Just before impact, the target was moving toward the hunter with at 10.00 m/s. The bullet then strikes the target and exits with a velocity of +175.00 m/s. (b) What is the minimum amount of kinetic energy required to conserve the momentum of the system? (g) Find the kinetic energy for the system in the zero momentum frame before the collision. (h)...
A projectile is launched on a planet other than Earth at a velocity of 38.1 m/s...
A projectile is launched on a planet other than Earth at a velocity of 38.1 m/s 30.0o above the horizontal. The ground slopes down in the direction of travel, so the projectile impacts the ground 37.9 m below the level from which it was launched. If the horizontal distance it travels is 419 m, what is the magnitude of the acceleration of gravity near the surface of the alien planet?
A projectile is launched on a planet other than Earth at a velocity of 44.8 m/s...
A projectile is launched on a planet other than Earth at a velocity of 44.8 m/s 30.0o above the horizontal. The ground slopes down in the direction of travel, so the projectile impacts the ground 47.3 m below the level from which it was launched. If the horizontal distance it travels is 376 m, what is the magnitude of the acceleration of gravity near the surface of the alien planet?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT