Question

In: Biology

For the wild-type allele: 5’-ATG GAC TGG GTA ACT GAT ATG ATA GTG CCC GGG GAA...

For the wild-type allele:

5’-ATG GAC TGG GTA ACT GAT ATG ATA GTG CCC GGG GAA CGC GCG CGG TAA-3’

1. Write the amino acid sequence of the wild-type allele (three letter or single-letter amino acid abbreviation ok).

2. Write the amino acid sequence of the following mutants:

Mutant 1: transition at nucleotide 24

Mutant 2: transition at nucleotide 15

Mutant 3: A C-->A transversion at nucleotide 29

Mutant 4: transition at nucleotide 8

Mutant 5: an insertion of T after nucleotide 14

Mutant 6: a deletion of nucleotide 19

Mutant 7: An insertion of GG after nucleotide 40

3. For each mutant, state whether the mutation is missense, nonsense, frameshift, or silent (it is possible that more than one can apply to the mutation)

Solutions

Expert Solution

In Answers

Line 1 - DNA sequence

Line 2 - mRNA sequence

Line - Amino acid sequence

1. Wild sequence

ATG    GAC   TGG   GTA ACT       GAT ATG ATA GTG CCC    GGG GAA CGC    GCG   CGG    TAA

UAC    CUG   ACC   CAU    UGA       CUA UAC UAU   CAC GGG CCC   CUU GCG   CCC    GCG   CCA

TYR    LEU     THR    HIS      STOP     LEU TYR   TYR    HIS GLY PRO   LEU   ALA ARG    ALA ILE

Question 2.

A. Transition at Nucleotide 24

ATG    GAC   TGG   GTA     ACT       GAT ATG ATG   GTG CCC    GGG GAA CGC GCG   CGG    TAA

UAC    CUG   ACC   CAU UGA      CUA UAC UAC CAC GGG CCC   CUU GCG   CCC    GCG   CCA

TYR    LEU     THR    HIS    STOP     LEU TYR   TYR    HIS   GLY     PRO   LEU   ALA    ARG ALA    ILE

B. Transition at Nucleotide 15

ATG    GAC   TGG   GTA     ACC       GAT ATG ATA   GTG CCC    GGG GAA CGC    GCG   CGG    TAA

UAC    CUG   ACC   CAU    UGG     CUA UAC UAU   CAC GGG   CCC   CUU GCG   CCC    GCG   CCA

TYR    LEU     THR    HIS      TRP     LEU TYR   TYR    HIS   GLY     PRO   LEU ALA    ARG    ALA    ILE

C. Transversion at Nucleotide 29

ATG    GAC   TGG   GTA ACT    GAT ATG ATA   GTG CAC    GGG GAA CGC    GCG   CGG TAA

UAC    CUG   ACC   CAU    UGA     CUA UAC UAU   CAC GUG   CCC   CUU GCG   CCC    GCG   CCA

TYR    LEU     THR    HIS      STOP   LEU TYR   TYR    HIS   VAL     PRO   LEU   ALA    ARG    ALA    ILE

D. Transition at nucleotide 8

ATG    GAC   TAG   GTA ACT GAT ATG ATA   GTG CCC    GGG GAA CGC    GCG   CGG    TAA

UAC    CUG   AUC   CAU    UGA      CUA UAC UAU   CAC GGG   CCC CUU GCG   CCC    GCG   CCA

TYR    LEU     ILE    HIS      STOP     LEU TYR   TYR    HIS   GLY   PRO LEU   ALA ARG ALA    ILE

E. Insertion of T after nucleotide 14

DNA    5’-ATG GAC TGG GTA   ACT   TGA   TAT GAT   AGT   GCC CGG   GGA ACG CGC GCG GTA A-3

RNA       UAC CUG ACC CAU UGA   ACU AUA CUA UCA CGG GCC CCU UGC GCG CGC CAU U

AMINO    TYR   LEU   THR HIS   STOP THR ILE    LEU   SER ARG   ALA   PRO CYS   ALA ARG HIS

F. Deletion of Nucleotide 19

ATG      GAC     TGG     GTA      ACT    GAT     AGA   TAG   TGC   CCG   GGG AAC   GCG   CGC   GGT   AA

UAC      CUG     ACC      CAU    UGA     CUA    UCU   AUC    ACG   GGC   CCC UUG   CGC   GCG   CCA UU

TYR       LEU     THR      HIS      STOP    LEU    SER    ILE     THR    GLY    PRO   LEU    ARG    ALA     PRO

G. Insertion of GG after nucleotide 40

5’-ATG    GAC   TGG   GTA     ACT       GAT ATG ATA   GTG CCC    GGG GAA CGC    GGG    CGC GGT AA-3

   UAC    CUG   ACC   CAU    UGA       CUA UAC UAU   CAC GGG   CCC   CUU GCG   CCC    GCG   CCA UU

   TYR    LEU     THR    HIS      STOP     LEU TYR   TYR    HIS   GLY     PRO   LEU   ALA    PRO    ALA    PRO

Question 3

Mutant 1 is an example of silent mutation because the transition at nucleotide 24 does not cause any change in amino acid, the aminoacid was tyrosine before and after the transition.

Mutant 2 is an example of nonstop mutation because due to the transition at nucleotide 15, stop codon changes to the amino acid codon. Hence it nonstop mutation.

Mutant 3 is an example of missense mutation because transversion at nucleotide 29 causes a change in amino acid from glycine to Valine, hence it is a missense mutation.

Mutant 4 is an example of missense mutation because transition at nucleotide 8 causes a change in amino acid from Threonine to Isoleucine, hence it is a missense mutation.

Mutant 5, 6, and 7 are an example of Frameshift mutation. Because the mutations in these DNAs cause the change in reading frame of the protein.


Related Solutions

4. This is a coding DNA : 5’ ATG AGT GAT CTA GAC AGA CTT GCA...
4. This is a coding DNA : 5’ ATG AGT GAT CTA GAC AGA CTT GCA AGC CGG …3’ (a) Predict the complementary strand and identify the strand name of it. (3' --> 5’) (b) Predict the mRNA sequence (5' --> 3’) for the given coding strand. (c) Predict the amino acid sequence of the gene. (d) Predict the amino sequence, if there is a base substitution from A to T at the 16th base. (e) Which type of mutation...
A protein with a wild-type allele (Pwt) and protein with a mutant allele (Pm) are one...
A protein with a wild-type allele (Pwt) and protein with a mutant allele (Pm) are one amino acid in the position 12 of the protein chain. The mutant allele's sequence is 5'CTT whereras the wild-type allele's sequence is 5'CAT. Using an amino acid chart, find : Pwt in position #12 Pm in position #12
CHAPTER 4: Modification of Mendelian Ratios  Know the definition of: Wild-type Allele and Null Allele...
CHAPTER 4: Modification of Mendelian Ratios  Know the definition of: Wild-type Allele and Null Allele  Know the difference between: Gain-of-Function Mutation, Loss-of-Function Mutation, Neutral Mutation  HAVE to know the difference between: Incomplete Dominance (heterozygote is an intermediate phenotype) and Codominance (both alleles are expressed)  Know: Multiple alleles can exist for one gene – must observe in populations  Know what Lethal Alleles are (homozygous recessive – lethal)  Know how to apply the Fork-line Method and...
Brachydactyly is a condition caused by an allele dominant to wild-type in humans, in which the...
Brachydactyly is a condition caused by an allele dominant to wild-type in humans, in which the fingers and toes are shortened. In a population of 10,000 people, 1,600 are BB, 4,800 are Bb, and 3,600 are bb. A)What percentage of people in this population have short fingers and toes? B)What is the frequency of the b allele? C)Is this population in Hardy-Weinberg equilibrium?
In flies, eye color is a sex-linked trait. At this locus, the wild-type allele results in...
In flies, eye color is a sex-linked trait. At this locus, the wild-type allele results in red eye color and the mutant results in white eye color. Start with the P generation in which one parent has red eyes and the second parent has white eyes, and discuss offspring and crosses in the F1 and F2 generations in the following two conditions: 1. male with white eyes and female with red eyes; 2. male with red eyes and female with...
In fruit flies, bristle shape is controlled by an X-linked gene. The dominant wild-type allele (+)...
In fruit flies, bristle shape is controlled by an X-linked gene. The dominant wild-type allele (+) results in normal bristles, while the recessive allele (sn) results in short 'singed' bristles. A normal-bristled female offspring of a male with singed bristles is crossed with a normal-bristled male. If we consider only the progeny that have normal bristles, what is the ratio of females : males among these? 2:3 1:3 3:1 1:1 2:1 3:2 1:2
3’ - TAC AAA GAG GAT CCG ACC TCA ACT - 5” 3. The DNA template...
3’ - TAC AAA GAG GAT CCG ACC TCA ACT - 5” 3. The DNA template for transcription is only one strand of the DNA double helix. How do we know that the mRNA is not based on the sequence of the other DNA strand? 4. What is the anticodon sequence of the tRNA that binds to the fourth codon of this mRNA? 5. Translate the mRNA sequence into the amino acid sequence (use the genetic code table from the...
The allele b gives Drosophila flies a black body, and b+ gives brown, the wild-type phenotype....
The allele b gives Drosophila flies a black body, and b+ gives brown, the wild-type phenotype. The allele wx of a separate gene gives waxy wings, and wx+ gives nonwaxy, the wild-type phenotype. The allele cn of a third gene gives cinnabar eyes, and cn+ gives red, the wild-type phenotype. A female heterozygous for these three genes is testcrossed, and 2,424 progeny (you could also use n=2,423) are classified as follows: cn+ · wx+ · b 101 cn · wx+...
5. The eye color gene in fruitflies is located on the X chromosome. The dominant wild-type...
5. The eye color gene in fruitflies is located on the X chromosome. The dominant wild-type X^+ allele produces red eyes, while the recessive XW allele produces white eyes. In addition, sex is determined in fruitflies by the ratio of the number of X chromosomes to number of sets of autosomes. Imagine that a pure-breeding white-eyed female with the genotype X^W X^W Y AA mates with a pure-breeding red-eyed male who has the genotype X^+ Y AA. Imagine that nondisjunction...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT